Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
4th Edition
ISBN: 9780133953145
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 56EAP
A 40-cm-diameter, 50-cm-tall, 15 kg hollow cylinder is placed on top of a 40-cm-diameter, 30-cm-tall, 100 kg cylinder of solid aluminum, then the two are sent sliding across frictionless ice. The static and kinetic coefficients of friction between the cylinders are 0.45 and 0.25, respectively. Air resistance cannot be neglected. What is the maximum speed the cylinders can have without the top cylinder sliding off?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A box is being lowered from a height of 10m to the ground. A rope is attached to a cylinder. The cylinder is stationary and can be modeled as a solid disc and is 50kg with a radius of 0.8m. The cylinder is frictionless. The box has a mass of 80kg. If the box starts from rest, what is the speed right before it touches the ground?4
A 8.10 kg uniform disk with a radius of 14.3 cm is wrapped with a massless string and is suspending a 4.47 kg mass. What is the tension in the string as the mass falls? What is the speed of the mass after it has fallen 3.56 m?
A solid cylinder and a hollow cylinder have the same mass, same radius, and turn on frictionless, horizontal axles. (The hollow cylinder has lightweight spokes connecting it to the axle.) A rope is wrapped around each cylinder and tied to a block. The blocks have the same mass and are held the same height above the ground as shown. Both blocks are released simultaneously. The ropes do not slip. Which block hits the ground first? Or is it a tie? Explain.
Chapter 7 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (Chs 1-42) Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition)
Ch. 7 - You find yourself in the middle of a frozen lake...Ch. 7 - How does a sprinter sprint? What is the forward...Ch. 7 - How does a rocket take off? What is the upward...Ch. 7 - How do basketball players jump straight up into...Ch. 7 - A mosquito collides head-on with a car traveling...Ch. 7 - A mosquito collides head-on with a car traveling...Ch. 7 - A small car is pushing a large truck. They are...Ch. 7 - A very smart 3-year-old child is given a wagon for...Ch. 7 - Teams red blue are having a tug-of-war. According...Ch. 7 - Will hanging a magnet in front of the iron cart in...
Ch. 7 - FIGURE Q7.11 shows two masses at rest. The string...Ch. 7 - FIGURE Q7.12 shows two masses at rest. The string...Ch. 7 - The hand in FIGURE Q7.13 is pushing on the back of...Ch. 7 - A and B in FIGURE Q7.14 are connected by a...Ch. 7 - In case a in FIGURE Q7.15, block A is accelerated...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises I through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - a. How much force does an 80 kg astronaut exert on...Ch. 7 - Block B in FIGURE EX7.7 rests on a surface for...Ch. 7 - A 1000 kg car pushes a 2000 kg truck that has a...Ch. 7 - with masses of 1 kg, 2 kg, and 3 kg are lined up...Ch. 7 - A 3000 kg meteorite falls toward the earth. What...Ch. 7 - The foot of a 55 kg sprinter is on the ground for...Ch. 7 - A steel cable lying flat on the floor drags a 20...Ch. 7 - An 80 kg spacewalking astronaut pushes off a 640...Ch. 7 - The sled dog in FIGURE EX7.14 drags sleds A and B...Ch. 7 - Two-thirds of the weight of a 1500 kg car rests on...Ch. 7 - FIGURE EX7.16 shows two 1.0 kg blocks connected by...Ch. 7 - What is the tension in the rope of Figure EX7.17?...Ch. 7 - A 2.0-m-long, 500 g rope pulls a 10 kg block of...Ch. 7 - A woman living in a third-story apartment is...Ch. 7 - Two blocks are attached to opposite ends of a...Ch. 7 - The cable cars in San Francisco are pulled along...Ch. 7 - A 2.0 kg rope hangs from the ceiling. What is the...Ch. 7 - A mobile at the art museum has a 2.0 kg steel cat...Ch. 7 - The 1.0 kg block in FIGURE EX7.24 is tied to the...Ch. 7 - The 100 kg block in FIGURE EX7.25 takes 6.0 s to...Ch. 7 - FIGURE P7.26 shows two strong magnets on opposite...Ch. 7 - FIGURE P7.27 shows a 6.0 N force pushing two...Ch. 7 - 28. A rope of length L and mass m is suspended...Ch. 7 - Prob. 29EAPCh. 7 - 30. A Federation starship (2.0 × 106 kg) uses its...Ch. 7 - Your forehead can withstand a force of about 6.0...Ch. 7 - Bob, who has a mass of 75 kg, can throw a 500 g...Ch. 7 - Two packages at UPS start sliding down the 20°...Ch. 7 - The two blocks in FIGURE P7.34 are sliding down...Ch. 7 - The coefficient of static friction is 0.60 between...Ch. 7 - The block of mass M in FIGURE P7.36 slides on a...Ch. 7 - The 10.2 kg block in FIGURE P7.37 is held in place...Ch. 7 - The coefficient of kinetic friction between the...Ch. 7 - FIGURE P7.39 shows a block of mass m resting on a...Ch. 7 - A4.0 kg box is on a frictionless 35° slope and is...Ch. 7 - Prob. 41EAPCh. 7 - The 2000 kg cable car shown in FIGURE P7.42...Ch. 7 - The century-old ascensores in Valparaiso, Chile,...Ch. 7 - A 3200 kg helicopter is flying horizontally. A 250...Ch. 7 - A house painter uses the chair-and-pulley...Ch. 7 - A long, 1.0 kg rope hangs from a support that...Ch. 7 - Prob. 47EAPCh. 7 - Prob. 48EAPCh. 7 - Find an expression for the magnitude of the...Ch. 7 - Prob. 50EAPCh. 7 - Prob. 51EAPCh. 7 - Prob. 52EAPCh. 7 - The lower block in FIGURE CP7.53 is pulled on by a...Ch. 7 - Prob. 54EAPCh. 7 - Prob. 55EAPCh. 7 - A 40-cm-diameter, 50-cm-tall, 15 kg hollow...Ch. 7 - 57. FIGURE CP7.57 shows a 200 g hamster sitting on...Ch. 7 - Prob. 58EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 1.0-m-long massless rod is pivoted at one end and swings around in a circle on a frictionless table. A block with a hole through the center can slide in and out along the rod. Initially, a small piece of wax holds the block 60 cm from the pivot. The block is spun at 30 rpm , then the temperature of the rod is slowly increased. When the wax melts, the block slides out to the end of the rod. What is the final angular velocity?arrow_forwardA cube with mass m is put against the inner wall of a hollow cylinder. The cylinder with radius R rotates in a counterclockwise direction about its axis with a constant angular speed w. Find the coefficient of static friction which μl prevents the cube from sliding down the inner wall of the cylinder. R m D με Ομ Ομε με w² R g 9 w² R 9 w² R w² R 9arrow_forwardA 1.5 kg block and a 2.7 kg block are attached to opposite ends of a light rope. The rope hangs over a solid, frictionless pulley that is 29cm in diameter and has a mass of 0.78kg. The pulley can be modeled as a cylinder. When the blocks are released, what is the acceleration of the lighter block?arrow_forward
- A carnival ride tests your courage by putting you in a situation that would appear dangerous. A person with a mass of 75.3 kg steps into a cylindrical tube that has a radius of 4.1 m. The tube begins to rotate around its center axis. As the speed of rotation increases, the passenger feels pushed against the wall of the tube. When the tube is rotating rapidly, the floor drops out. Luckily, there is a coefficient of static friction between the passenger and the wall, which keeps them from falling. If the value of that coefficient is 0.501, then what is the minimum speed that the passenger must be moving at?arrow_forwardQ2 mathematical Mechanicsarrow_forwardA potter's wheel is rotating around a vertical axis through its center at a frequency of 1.8 rev/s . The wheel can be considered a uniform disk of mass 5.0 kg and diameter 0.34 m The potter then throws a 2.6-kg chunk of clay, approximately shaped as a flat disk of radius 7.0 cm, onto the center of the rotating wheel. - What is the frequency of the wheel after the clay sticks to it? Ignore frictionarrow_forward
- A skateboarder is attempting to make a circular arc of radius r = 14 m in a parking lot. The total mass of the skateboard and skateboarder is m = 89 kg. The coefficient of static friction between the surface of the parking lot and the wheels of the skateboard is μs = 0.59 . What is the maximum speed, in meters per second, he can travel through the arc without slipping?arrow_forwardA ride at a carnival has four spokes to which pods are attached that can hold two people. The spokes are each 15 m long and are attached to a central axis. Each spoke has mass 200.0 kg, and the pods each have mass 100.0 kg. If the ride spins at 0.2 rev/s with each pod containing two 50.0-kg children, what is the new spin rate if all the children jump off the ride?arrow_forwardA lawnmower engine brings a 1 m-long by 0.1 m-wide cutting blade of mass 2.55 kg from rest to an angular speed of 1800 rpm in 1.27 seconds. What is the average power supplied by the engine during this period? 2910 W 2940 W 2970 W 3000 W 3030 Warrow_forward
- Vlad needs to draw water from a deep well. He is using a bucket that is connected by rope (negligible mass) to a wooden axle at the top of the well. By cranking a handle at the end of the axle, Vlad is able to unwind the rope around the axle and move the bucket downward. The radius of the axle is R = 30 cm. The bucket is traveling downward at speed vi = 25 cm/s when the handle slips out of Vlad’s hand. As the rope unwinds and the bucket falls downward, the axle spins freely with an angular acceleration whose magnitude is α = 4.5 rad/s^2. The bucket falls through a distance of d = 7.0 m before crashing into the water. 1. What is the angular speed ωf of the axle when the bucket first hits the water? 2. As d → 0, what limit does ωf approach and why?arrow_forwardGreek engineers had the unenviable task of moving large columns from the quarries to the city. One engineer, Chersiphron, tried several different techniques to do this. One method was to cut pivot holes into the ends of the stone and then use oxen to pull the column. The 4ft diameter column weighs 12000lb, and the team of oxen generates a constant pull force of 1500lb on the center of the cylinder G. Knowing that the column starts from rest and rolls without slipping, determine the velocity of its center G after it has moved 5ft and the minimum static coefficient of friction that will keep it from slipping.arrow_forward2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY