(a)
The initial kinetic energy of rock.
(a)
Explanation of Solution
Given:
The mass of rock piece is
The initial speed of rock piece is
The maximum height attained by the rock piece is
Formula used:
Write the expression for initial kinetic energy.
Here,
Calculation:
Substitute
Conclusion:
Thus, the initial kinetic energy of rock pieceis
(b)
The increase in thermal energy due to air resistance.
(b)
Explanation of Solution
Given:
The mass of rock piece is
The initial speed of rock piece is
The maximum height attained by the rock piece is
Formula used:
Write the expression for change in potential energy.
Here,
Write the expression for change in kinetic energy.
Here,
Total energy of object is conserved at all points. Work done by external force is equal to the sum of change in gravitational potential energy, kinetic energy and thermal energy.
Write the expression of work done by external force.
Here,
There is no external force acting on the block; so, the work done by external force is zero.
Substitute
Substitute
Calculation:
Substitute
Conclusion:
Thus, the increase in thermal energy due to air resistance is
(c)
The final speed of the rock piece.
(c)
Explanation of Solution
Given:
The mass of rock piece is
The initial speed of rock piece is
The maximum height attained by the rock piece is
The increase in thermal energy during downward motion is
Formula used:
Write the expression for change in potential energy.
Here,
Write the expression for change in kinetic energy.
Here,
Total energy of object is conserved at all points. Work done by external force is equal to the sum of change in gravitational potential energy, kinetic energy and thermal energy.
Write the expression of work done by external force.
Here,
There is no external force acting on the block; so, the work done by external force is zero.
For rock-piece moving upward:
Substitute
Substitute
For rock-piece moving downward:
Substitute
Substitute
Calculation:
Substitute
Conclusion:
Thus, the final speed of the rock piece is
Want to see more full solutions like this?
Chapter 7 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- At point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?arrow_forwardMake a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).arrow_forwardLab Assignment #3 Vectors 2. Determine the magnitude and sense of the forces in cables A and B. 30° 30° 300KN 3. Determine the forces in members A and B of the following structure. 30° B 200kN Name: TA: 4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N, F₂-800N, F, 900N, 0,-30°, 62-50° 30° 50° F₁ = 500N = 900N F₂ = 800Narrow_forward
- Lab Assignment #3 Vectors Name: TA: 1. With the equipment provided in the lab, determine the magnitude of vector A so the system is in static equilibrium. Perform the experiment as per the figure below and compare the calculated values with the numbers from the spring scale that corresponds to vector A. A Case 1: Vector B 40g Vector C 20g 0 = 30° Vector A = ? Case 2: Vector B 50g Vector C = 40g 0 = 53° Vector A ? Case 3: Vector B 50g Vector C 30g 0 = 37° Vector A = ?arrow_forwardThree point-like charges are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 20.0 cm, and the point (A) is located half way between q1 and q2 along the side. Find the magnitude of the electric field at point (A). Let q1=-1.30 µC, q2=-4.20µC, and q3= +4.30 µC. __________________ N/Carrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning