(a)
Interpretation:
The average rate of consumption of hydrogen is to be determined.
Concept Introduction:
The average rate of the reaction is referred to the change in the molar concentration in the distinct interval of time. Mathematically, the ratio of change in molar concentration of a reactant or a product to the change in the time interval gives the average
The average rate of consumption or the disappearance of reactant is negative. Mathematical expression is shown below.
The average rate of formation or the appearance of reactant is positive. Mathematical expression is shown below.
(b)
Interpretation:
The unique rate of reaction is to be determined.
Concept Introduction:
The unique rate of reaction is regardless of the reactant and products. It does depend upon the coefficient of the species in the balanced chemical reaction. There is no requirement of specifying the species in the unique rate of reaction.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
CHEM PRINCIPLES LL W/ACHIEVE ONE-SEM
- The label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forwardIodomethane (CH3I) is a commonly used reagent in organic chemistry. When used properly, this reagent allows chemists to introduce methyl groups in many different useful applications. The chemical does pose a risk as a carcinogen, possibly owing to iodomethanes ability to react with portions of the DNA strand (if they were to come in contact). Consider the following hypothetical initial rates data: [DNA]0 ( mol/L) [CH3I]0 ( mol/L) Initial Rate (mol/Ls) 0.100 0.100 3.20 104 0.100 0.200 6.40 104 0.200 0.200 1.28 103 Which of the following could be a possible mechanism to explain the initial rate data? MechanismIDNA+CH3IDNACH3++IMechanismIICH3ICH3++ISlowDNA+CH3+DNACH3+Fastarrow_forwardAmoxicillin is an antibiotic packaged as a powder. When it is used to treat babies and small animals, the pharmacist or veterinarian must suspend it in water, so that it can be administered orally with a medicine dropper. The label says to dispose of unused suspension after 14 days. It also points out that refrigeration is required. In the context of this chapter, what is implied in the latter two statements?arrow_forward
- Define stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forwardThe following equation represents a reversible decomposition: CaCO3(s)CaO(s)+CO2(g) Under what conditions will decomposition in a closed container proceed to completion so that no CaCO3 remains?arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forward
- Substances that poison a catalyst pose a major concern for many engineering designs, including those for catalytic converters. One design option is to add materials that react with potential poisons before they reach the catalyst. Among the commonly encountered catalyst poisons are silicon and phosphorus, which typically form phosphate or silicate ions in the oxidizing environment of an engine. Group 2 elements are added to the catalyst to react with these contaminants before they reach the working portion of the catalytic converter. If estimates show that a catalytic converter will be exposed to 625 g of silicon during its lifetime, what mass of beryllium would need to be included in the design?arrow_forwardLanthanum(III) phosphate crystallizes as a hemihydrate, LAPO4 · H20. When it is heated, it loses water to give anhydrous lanthanum(III) phosphate: 2(LAPO4 · H2O(s)) → 2 LaPO4 (s) + H20(g) This reaction is first order in the chemical amount of LAPO, · H2O. The rate constant varies with tempera- ture as follows: Temperature (°C) k (s-1) 205 2.3 x 10-4 219 3.69 x 10-4 246 7.75 x 10-4 260 12.3 x 10-4 Compute the activation energy of this reaction.arrow_forwardConsider the following reaction: 1. 2 N,O5 (g) → 4 NO, (g) + O, (g) The initial concentration of N2O5 was 0.48 mol/L, and 25 minutes after initiating the reaction, all of the N,Os has been consumed. (a) Calculate the average rate of the reaction over this 25-minute time interval. (b) Is it correct to assume that the rate law is Rate = k[N,O5]² based on the balanced chemical equation? Briefly explain your answer.arrow_forward
- It's just the order 1 to fourarrow_forwardConsider the following reaction: 2 NO(g) + 2 H2(g) N2(g) + 2 H2O(g) (a) The rate law for this reaction is second order in NO(g) and first-order in H2(g). What is the rate law for this reaction? (b) If the rate constant for this reaction at a certain temperature is 9.70e+04, what is the reaction rate when [NO(g)] = 0.0560 M and [H2(g)] = 0.119 M?Rate = M/s.(c) What is the reaction rate when the concentration of NO(g) is doubled, to 0.112 M while the concentration of H2(g) is 0.119 M?Rate = M/sarrow_forward(a) Explain the meaning of the sentence:“The velocity laws of reactions are empirical” (b) It can be determined that the velocity law of a generic reaction A +B→Pév = k[A]x[B]y. Plot on a graph the variation of [A] and [P] with time, and explain why v= d[P]/dt = -d[A]/dt. (c) Explain the meaning of the terms k, x and y, in the velocity law, presented in item b: (d) Explain what it means in practice for a velocity law to be of zero order. Plot ,A as a function of t, for the zero-order reaction A→Products. (e) Explain what elementary reactions are and how they can be classified.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning