(a)
Interpretation:
Plausible mechanism should be drawn given the major product of 2-methyl-2-hexene.
Concept Introduction:
E2 reaction is a bimolecular elimination reaction in which alkene compounds formed in a single step.
Rate of E2 reaction is depends upon the concentration of substrate and concentration of base. Because in a bimolecular reaction, there should involves two chemical entities.
Equation for the rate of E2 reaction is,
(b)
Interpretation:
The expected rate equation should be found for the given reaction.
Concept Introduction:
E2 reaction is a bimolecular elimination reaction in which alkene compounds formed in a single step. Alkenes are formed when alkyl halides are treated with bases via eliminating one β-proton and one α-halo group of the alkyl halide.
Rate of E2 reaction is depends upon the concentration of substrate and concentration of base. Because in a bimolecular reaction, there should involves two chemical entities.
Equation for the rate of E2 reaction is,
(c)
Interpretation:
The change in rate when concentration of base is doubled in given reaction has to be explained.
Concept Introduction:
E2 reaction is a bimolecular elimination reaction in which alkene compounds formed in a single step. Alkenes are formed when alkyl halides are treated with bases via eliminating one β-proton and one α-halo group of the alkyl halide.
Rate of E2 reaction is depends upon the concentration of substrate and concentration of base. Because in a bimolecular reaction, there should involves two chemical entities.
Equation for the rate of E2 reaction is,
(d)
Interpretation:
Energy level diagram should be drawn for the given reaction process.
Concept Introduction:
E2 reaction is a bimolecular elimination reaction in which alkene compounds formed in a single step. Alkenes are formed when alkyl halides are treated with bases via eliminating one β-proton and one α-halo group of the alkyl halide.
Energy diagram of an E2 reaction has only one hump because only one step is involved in the E2 reaction.
Transition state is a state in between the reactant and product.
In the transition state of E2 reaction: the abstraction of β-proton by the base, removal of leaving group (halo-group) and formation of double bond are taking place.
(e)
Interpretation:
The transition state should be drawn for the given transformation of reaction.
Concept Introduction:
E2 reaction is a bimolecular elimination reaction in which alkene compounds formed in a single step. Alkenes are formed when alkyl halides are treated with bases via eliminating one β-proton and one α-halo group of the alkyl halide.
Energy diagram of an E2 reaction has only one hump because only one step is involved in the E2 reaction.
Transition State: The state which defines the highest potential energy with respect to reaction co-ordinate between reactant and product. It is usually denoted by using the symbol ‘≠’.

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
ORGANIC CHEMISTRY 1 TERM ACCESS
- What alkene or alkyne yields the following products after oxidative cleavage with ozone? Click the "draw structure" button to launch the drawing utility. and two equivalents of CH2=O draw structure ...arrow_forwardH-Br Energy 1) Draw the step-by-step mechanism by which 3-methylbut-1-ene is converted into 2-bromo-2-methylbutane. 2) Sketch a reaction coordinate diagram that shows how the internal energy (Y- axis) of the reacting species change from reactants to intermediate(s) to product. Brarrow_forward2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). C5H10 H-CI CH2Cl2 CIarrow_forward
- Draw the products of the stronger acid protonating the other reactant. དའི་སྐད”“ H3C OH H3C CH CH3 KEq Product acid Product basearrow_forwardDraw the products of the stronger acid protonating the other reactant. H3C NH2 NH2 KEq H3C-CH₂ 1. Product acid Product basearrow_forwardWhat alkene or alkyne yields the following products after oxidative cleavage with ozone? Click the "draw structure" button to launch the drawing utility. draw structure ... andarrow_forward
- Draw the products of the stronger acid protonating the other reactant. H3C-C=C-4 NH2 KEq CH H3C `CH3 Product acid Product basearrow_forward2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). C5H10 Br H-Br CH2Cl2 + enant.arrow_forwardDraw the products of the stronger acid protonating the other reactant. KEq H₂C-O-H H3C OH Product acid Product basearrow_forward
- Draw the products of the stronger acid protonating the other reactant. OH KEq CH H3C H3C `CH3 Product acid Product basearrow_forward2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). Ph H-I CH2Cl2arrow_forward3 attempts left Check my work Draw the products formed in the following oxidative cleavage. [1] 03 [2] H₂O draw structure ... lower mass product draw structure ... higher mass productarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





