Concept explainers
(a)
Interpretation:
The dominant types of intermolecular forces present in
Concept Introduction:
- Intermolecular forces are the forces among a molecule and another molecule. There are three types of intermolecular forces in liquids they are dipole-dipole interactions, hydrogen bonds, and London forces.
- Dipole-dipole interactions are formed between polar molecules.
- Hydrogen bonding occurs due to attractions among a hydrogen covalently bonded to a very electronegative atoms such as fluorine, oxygen, or nitrogen and another electronegative atoms such as fluorine, oxygen, or nitrogen.
- London forces are weakest type of intermolecular forces and it occurs in both polar and non-polar molecules.
- The order of strongest intermolecular forces present in a liquid are arranged as descending order is shown below,
(b)
Interpretation:
The dominant types of intermolecular forces present in
Concept Introduction:
- Intermolecular forces are the forces among a molecule and another molecule. There are three types of intermolecular forces in liquids they are dipole-dipole interactions, hydrogen bonds, and London forces.
- Dipole-dipole interactions are formed between polar molecules.
- Hydrogen bonding occurs due to attractions among hydrogen covalently bonded to a very electronegative atoms such as fluorine, oxygen, or nitrogen and another electronegative atoms such as fluorine, oxygen, or nitrogen.
- London forces are weakest type of intermolecular forces and it occurs in both polar and non-polar molecules.
- The order of strongest intermolecular forces present in a liquid are arranged as descending order is shown below,
(c)
Interpretation:
The dominant types of intermolecular forces present in
Concept Introduction:
- Intermolecular forces are the forces among a molecule and another molecule. There are three types of intermolecular forces in liquids they are dipole-dipole interactions, hydrogen bonds, and London forces.
- Dipole-dipole interactions are formed between polar molecules.
- Hydrogen bonding occurs due to attractions among hydrogen covalently bonded to a very electronegative atoms such as fluorine, oxygen, or nitrogen and another electronegative atoms such as fluorine, oxygen, or nitrogen.
- London forces are weakest type of intermolecular forces and it occurs in both polar and non-polar molecules.
- The order of strongest intermolecular forces present in a liquid are arranged as descending order is shown below,
(d)
Interpretation:
The dominant types of intermolecular forces present in
Concept Introduction:
- Intermolecular forces are the forces among a molecule and another molecule. There are three types of intermolecular forces in liquids they are dipole-dipole interactions, hydrogen bonds, and London forces.
- Dipole-dipole interactions are formed between polar molecules.
- Hydrogen bonding occurs due to attractions among hydrogen covalently bonded to a very electronegative atoms such as fluorine, oxygen, or nitrogen and another electronegative atoms such as fluorine, oxygen, or nitrogen.
- London forces are weakest type of intermolecular forces and it occurs in both polar and non-polar molecules.
- The order of strongest intermolecular forces present in a liquid are arranged as descending order is shown below,
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
General, Organic, and Biological Chemistry Seventh Edition
- Try: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forwardNonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward
- 451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward46. Consider an ideal gas that occupies 2.50 dm³ at a pressure of 3.00 bar. If the gas is compressed isothermally at a constant external pressure so that the final volume is 0.500 dm³, calculate the smallest value Rest can have. Calculate the work involved using this value of Rext.arrow_forwardNonearrow_forward
- 2010. Suppose that a 10 kg mass of iron at 20 C is dropped from a heigh of 100 meters. What is the kinetics energy of the mass just before it hits the ground, assuming no air resistance? What is its speed? What would be the final temperature of the mass if all the kinetic energy at impact is transformed into internal energy? The molar heat capacity of iron is Cpp = 25.1J mol-¹ K-1 and the gravitational acceleration constant is 9.8 m s¯² |arrow_forwardell last during 7. Write the isotopes and their % abundance of isotopes of i) Cl ii) Br 8. Circle all the molecules that show Molecular ion peak as an odd number? c) NH2CH2CH2NH2 d) C6H5NH2 a) CH³CN b) CH3OHarrow_forwardCalsulate specific heat Dissolution of NaOH ก ง ง Mass of water in cup Final temp. of water + NaOH Initial temp. of water AT Water AH Dissolution NaOH - "CaicuraORT. AH (NaOH)=-AH( 30g (water) 29.0°C 210°C 8°C (82) 100 3.. =1003.20 Conjosarrow_forward
- Please provide throrough analysis to apply into further problems.arrow_forwardMolecular ion peak: the peak corresponding to the intact morecure (with a positive charge) 4. What would the base peak and Molecular ion peaks when isobutane is subjected to Mass spectrometry? Draw the structures and write the molecular weights of the fragments. 5. Circle most stable cation a) tert-butyl cation b) Isopropyl cation c) Ethyl cation. d)Methyl cationarrow_forwardHow many arrangements are there of 15 indistinguishable lattice gas particles distributed on: a.V = 15 sites b.V = 16 sites c.V = 20 sitesarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning