
Concept explainers
(a)
Interpretation:
The osmotic pressure at
Concept introduction:
Osmotic pressure is defined as the minimum pressure applied on the solution to stop the flow of solvent molecules through the semi-permeable membrane.
Osmotic pressure is the colligative property and depends on the number of atoms of particle of the substance present in material.

Answer to Problem 7.85E
The osmotic pressure of the given solution is
Explanation of Solution
Given temperature
The mole fraction of
Where,
•
Substitute the values of number of moles of each component in the above formula.
The mole fraction of component
On complete dissociation of
The osmotic pressure of the solution is given as,
Where,
•
•
•
Substitute the value of
The osmotic pressure of the given solution is
The osmotic pressure of the given solution is
(b)
Interpretation:
The osmotic pressure at
Concept introduction:
Osmotic pressure is defined as the minimum pressure applied on the solution to stop the flow of solvent molecules through the semi-permeable membrane.
Osmotic pressure is the colligative property and depends on the number of atoms of particle of the substance present in material.

Answer to Problem 7.85E
The osmotic pressure of the given solution is
Explanation of Solution
Given temperature
The mole fraction of
Where,
•
Substitute the values of number of moles of each component in the above formula.
The mole fraction of component
On complete dissociation of
The osmotic pressure of the solution is given as,
Where,
•
•
•
Substitute the value of
The osmotic pressure of the given solution is
The osmotic pressure of the given solution is
(c)
Interpretation:
The osmotic pressure at
Concept introduction:
Osmotic pressure is defined as the minimum pressure applied on the solution to stop the flow of solvent molecules through the semi-permeable membrane.
Osmotic pressure is the colligative property and depends on the number of atoms of particle of the substance present in material.

Answer to Problem 7.85E
The osmotic pressure of the given solution is
Explanation of Solution
Given temperature
The mole fraction of
Where,
•
Substitute the values of number of moles of each component in the above formula.
The mole fraction of component
On complete dissociation of
The osmotic pressure of the solution is given as,
Where,
•
•
•
Substitute the value of
The osmotic pressure of the given solution is
The osmotic pressure of the given solution is
Want to see more full solutions like this?
Chapter 7 Solutions
Physical Chemistry
- 23.34 Show how to convert each starting material into isobutylamine in good yield. ཅ ནད ཀྱི (b) Br OEt (c) (d) (e) (f) Harrow_forwardPlease help me Please use https://app.molview.com/ to draw this. I tried, but I couldn't figure out how to do it.arrow_forwardPropose a synthesis of 1-butanamine from the following: (a) a chloroalkane of three carbons (b) a chloroalkane of four carbonsarrow_forward
- Select the stronger base from each pair of compounds. (a) H₂CNH₂ or EtzN (b) CI or NH2 NH2 (c) .Q or EtzN (d) or (e) N or (f) H or Harrow_forward4. Provide a clear arrow-pushing mechanism for each of the following reactions. Do not skip proton transfers, do not combine steps, and make sure your arrows are clear enough to be interpreted without ambiguity. a. 2. 1. LDA 3. H3O+ HOarrow_forwardb. H3C CH3 H3O+ ✓ H OHarrow_forward
- 2. Provide reagents/conditions to accomplish the following syntheses. More than one step is required in some cases. a. CH3arrow_forwardIdentify and provide an explanation that distinguishes a qualitative and quantitative chemical analysis. Provide examples.arrow_forwardIdentify and provide an explanation of the operational principles behind a Atomic Absorption Spectrometer (AAS). List the steps involved.arrow_forward
- Instructions: Complete the questions in the space provided. Show all your work 1. You are trying to determine the rate law expression for a reaction that you are completing at 25°C. You measure the initial reaction rate and the starting concentrations of the reactions for 4 trials. BrO³¯ (aq) + 5Br¯ (aq) + 6H* (aq) → 3Br₂ (l) + 3H2O (l) Initial rate Trial [BrO3] [H*] [Br] (mol/L) (mol/L) | (mol/L) (mol/L.s) 1 0.10 0.10 0.10 8.0 2 0.20 0.10 0.10 16 3 0.10 0.20 0.10 16 4 0.10 0.10 0.20 32 a. Based on the above data what is the rate law expression? b. Solve for the value of k (make sure to include proper units) 2. The proposed reaction mechanism is as follows: i. ii. BrО¸¯ (aq) + H+ (aq) → HBrO3 (aq) HBrO³ (aq) + H* (aq) → H₂BrO3* (aq) iii. H₂BrO³* (aq) + Br¯ (aq) → Br₂O₂ (aq) + H2O (l) [Fast] [Medium] [Slow] iv. Br₂O₂ (aq) + 4H*(aq) + 4Br(aq) → 3Br₂ (l) + H2O (l) [Fast] Evaluate the validity of this proposed reaction. Justify your answer.arrow_forwardе. Д CH3 D*, D20arrow_forwardC. NaOMe, Br Brarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





