General Chemistry
General Chemistry
7th Edition
ISBN: 9780073402758
Author: Chang, Raymond/ Goldsby
Publisher: McGraw-Hill College
bartleby

Videos

Question
Book Icon
Chapter 7, Problem 7.84QP

(a)

Interpretation Introduction

Interpretation:

The ground-state electron configurations for the given elements should be identified.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.

To find: Identify the ground-state electron configuration for Ge

(a)

Expert Solution
Check Mark

Answer to Problem 7.84QP

The ground-state electron configuration for Ge is [Ar]3d104s24p2

Explanation of Solution

Ge is placed in IVA group of the periodic table. Its atomic number is 32.  Therefore, Ge has 32 electrons in its shells.  Ge is a p-block element.  So, its outermost electrons are located in a p-subshell.  

The noble gas core for Ge is [Ar], where atomic number of Ar is 18.  So, the order of filling beyond the noble gas core is 4s, 3d and 4p. The electrons in Ge beyond its noble gas core are (32 – 18) = 14 electrons.  These 14 electrons enter into the 4s, 3d and 4p subshells.

Put all the 14 electrons in the atomic orbitals by following Aufbau principle, Pauli exclusion principle and Hund’s rule

General Chemistry, Chapter 7, Problem 7.84QP , additional homework tip  1

All the 14 electrons of Ge occupy the atomic orbitals from lowest energy to highest energy orbitals.  The maximum capacity of each orbital has two electrons which have opposite spins.  s-atomic orbitals have a single shell whereas p-atomic orbitals have three sub-shells.  d-atomic orbitals have five sub-shells.  The 14 electrons are going into the 4s-atomic orbitals first, followed by 3d-atomic orbitals which is again followed by 4p- atomic orbitals.  Blue colored orbital corresponds to 4s-atomic orbital.  Black colored orbital corresponds to 3d-atomic orbital.  Red colored orbital corresponds to 4p-atomic orbitals.

There are 2 electrons present in 4s-atomic orbital, ten electrons in 3d-atomic orbitals and two electrons in 4p-atomic orbitals.  Therefore, the ground-state electron configuration for Ge is [Ar]3d104s24p2.

(b)

Interpretation Introduction

Interpretation:

The ground-state electron configurations for the given elements should be identified.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.

To find: Identify the ground-state electron configuration for Fe

(b)

Expert Solution
Check Mark

Answer to Problem 7.84QP

The ground-state electron configuration for Fe is [Ar]3d64s2

Explanation of Solution

Fe is placed in VIIIB group of the periodic table. Its atomic number is 26.  Therefore, Fe has 26 electrons in its shells.  Fe is a d-block element.  So, its outermost electrons are located in a d-subshell.  

The noble gas core for Fe is [Ar], where atomic number of Ar is 18.  So, the order of filling beyond the noble gas core is 4s and 3d. The electrons in Fe beyond its noble gas core are (26 – 18) = 8 electrons.  These 8 electrons enter into the 4s and 3d subshells.

Put all the 8 electrons in the atomic orbitals by following Aufbau principle, Pauli exclusion principle and Hund’s rule.

General Chemistry, Chapter 7, Problem 7.84QP , additional homework tip  2

All the 8 electrons of Fe occupy the atomic orbitals from lowest energy to highest energy orbitals.  The maximum capacity of each orbital has two electrons which have opposite spins.  s-atomic orbitals have a single shell whereas d-atomic orbitals have five sub-shells.  The 8 electrons are going into the 4s-atomic orbitals first, followed by 3d-atomic orbitals.  Blue colored orbital corresponds to 4s-atomic orbital.  Black colored orbital corresponds to 3d-atomic orbital. 

There are 2 electrons present in 4s-atomic orbital, six electrons in 3d-atomic orbital.  Therefore, the ground-state electron configuration for Fe is [Ar]3d64s2.

(c)

Interpretation Introduction

Interpretation:

The ground-state electron configurations for the given elements should be identified.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.

To find: Identify the ground-state electron configuration for Zn

(c)

Expert Solution
Check Mark

Answer to Problem 7.84QP

The ground-state electron configuration for Zn is [Ar]3d104s2

Explanation of Solution

Zn is placed in IIB group of the periodic table. Its atomic number is 30.  Therefore, Zn has 30 electrons in its shells.  Zn is a d-block element.  So, its outermost electrons are located in a d-subshell.  

The noble gas core for Zn is [Ar], where atomic number of Ar is 18.  So, the order of filling beyond the noble gas core is 4s and 3d. The electrons in Zn beyond its noble gas core are (30 – 18) = 12 electrons.  These 12 electrons enter into the 4s and 3d subshells.

Put all the 12 electrons in the atomic orbitals by following Aufbau principle, Pauli exclusion principle and Hund’s rule.

General Chemistry, Chapter 7, Problem 7.84QP , additional homework tip  3

All the 12 electrons of Zn occupy the atomic orbitals from lowest energy to highest energy orbitals.  The maximum capacity of each orbital has two electrons which have opposite spins.  s-atomic orbitals have a single shell whereas d-atomic orbitals have five sub-shells.  The 12 electrons are going into the 4s-atomic orbitals first, followed by 3d-atomic orbitals.  Blue colored orbital corresponds to 4s-atomic orbital.  Black colored orbital corresponds to 3d-atomic orbital. 

There are 2 electrons present in 4s-atomic orbital, ten electrons in 3d-atomic orbital.  Therefore, the ground-state electron configuration for Zn is [Ar]3d104s2.

(d)

Interpretation Introduction

Interpretation:

The ground-state electron configurations for the given elements should be identified.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.

To find: Identify the ground-state electron configuration for Ni

(d)

Expert Solution
Check Mark

Answer to Problem 7.84QP

The ground-state electron configuration for Ni is [Ar]3d84s2

Explanation of Solution

Ni is placed in VIIIB group of the periodic table. Its atomic number is 28.  Therefore, Ni has 28 electrons in its shells.  Ni is a d-block element.  So, its outermost electrons are located in a d-subshell.  

The noble gas core for Ni is [Ar], where atomic number of Ar is 18.  So, the order of filling beyond the noble gas core is 4s and 3d. The electrons in Ni beyond its noble gas core are (28 – 18) = 10 electrons.  These 10 electrons enter into the 4s and 3d subshells.

Put all the 10 electrons in the atomic orbitals by following Aufbau principle, Pauli exclusion principle and Hund’s rule

General Chemistry, Chapter 7, Problem 7.84QP , additional homework tip  4

All the 10 electrons of Ni occupy the atomic orbitals from lowest energy to highest energy orbitals.  The maximum capacity of each orbital has two electrons which have opposite spins.  s-atomic orbitals have a single shell whereas d-atomic orbitals have five sub-shells.  The 12 electrons are going into the 4s-atomic orbitals first, followed by 3d-atomic orbitals.  Blue colored orbital corresponds to 4s-atomic orbital.  Black colored orbital corresponds to 3d-atomic orbital. 

There are 2 electrons present in 4s-atomic orbital, eight electrons in 3d-atomic orbital.  Therefore, the ground-state electron configuration for Ni is [Ar]3d84s2.

(e)

Interpretation Introduction

Interpretation:

The ground-state electron configurations for the given elements should be identified.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.

To find: Identify the ground-state electron configuration for W

(e)

Expert Solution
Check Mark

Answer to Problem 7.84QP

The ground-state electron configuration for W is [Xe]4f145d46s2

Explanation of Solution

W is placed in VIB group of the periodic table.  Its atomic number is 74.  Therefore, W has 74 electrons in its shells.  W is a d-block element.  So, its outermost electrons are located in a d-subshell.  

The noble gas core for W is [Xe], where atomic number of Xe is 54.  So, the order of filling beyond the noble gas core is 4f, 5d and 6s. The electrons in W beyond its noble gas core are (74 – 54) = 20 electrons.  These 20 electrons enter into the 4f, 5d and 6s subshells.

Put all the 20 electrons in the atomic orbitals by following Aufbau principle, Pauli exclusion principle and Hund’s rule

General Chemistry, Chapter 7, Problem 7.84QP , additional homework tip  5

All the 20 electrons of W occupy the atomic orbitals from lowest energy to highest energy orbitals.  The maximum capacity of each orbital has two electrons which have opposite spins.  s-atomic orbitals have a single shell whereas d-atomic orbitals have five sub-shells.  f-atomic orbitals have seven sub-shells.  The 20 electrons are going into the 4f -atomic orbitals first, followed by 6s-atomic orbitals which are again followed by 5d-atomic orbitals.  Green colored orbital corresponds to 4f-atomic orbitals.  Blue colored orbital corresponds to 6s-atomic orbital.  Black colored orbital corresponds to 5d-atomic orbital.

There are 14 electrons present in 4f-atomic orbital, two electrons in 6s-atomic orbital and four electrons in 5d-atomic orbital.  Therefore, the ground-state electron configuration of W is [Xe]4f145d46s2.

(f)

Interpretation Introduction

Interpretation:

The ground-state electron configurations for the given elements should be identified.

Concept Introduction:

An orbital is an area of space in which electrons are orderly filled.  The maximum capacity in any type of orbital is two electrons.  An atomic orbital is defined as the region of space in which the probability of finding the electrons is highest.  It is subdivided into four orbitals such as s, p, d and f orbitals which depend upon the number of electrons present in the nucleus of a particular atom.

There are three basic principles in which orbitals are filled by the electrons.

  1. 1. Aufbau principle: In German, the word 'aufbau' means 'building up'.  The electrons are arranged in various orbitals in the order of increasing energies.
  2. 2. Pauli exclusion principle: An electron does not have all the four quantum numbers.
  3. 3. Hund’s rule: Each orbital is singly engaged with one electron having the maximum same spin capacity after that only pairing occurs.

The electron configuration is the allocation of electrons of an atom in atomic orbitals.  Electronic configuration of a particular atom is written by following the three basic principles.

To find: Identify the ground-state electron configuration for Tl

(f)

Expert Solution
Check Mark

Answer to Problem 7.84QP

The ground-state electron configuration for Tl is [Xe]4f145d106s26p1

Explanation of Solution

Tl is placed in IIIA group of the periodic table.  Its atomic number is 81.  Therefore, Tl has 81 electrons in its shells.  Tl is a p-block element.  So, its outermost electrons are located in a p-subshell.  

The noble gas core for Tl is [Xe], where atomic number of Xe is 54.  So, the order of filling beyond the noble gas core is 4f, 6s, 5d and 6p. The electrons in Tl beyond its noble gas core are (81 – 54) = 27 electrons.  These 27 electrons enter into the 4f, 6s, 5d and 6p subshells.

Put all the 27 electrons in the atomic orbitals by following Aufbau principle, Pauli exclusion principle and Hund’s rule

General Chemistry, Chapter 7, Problem 7.84QP , additional homework tip  6

All the 27 electrons of Tl occupy the atomic orbitals from lowest energy to highest energy orbitals.  The maximum capacity of each orbital has two electrons which have opposite spins.  s-atomic orbitals have a single shell whereas p-atomic orbitals have three sub-shells.  d-atomic orbitals have five sub-shells whereas f-atomic orbitals have seven sub-shells.  The 27 electrons are going into the 4f -atomic orbitals first, followed by 6s-atomic orbitals which are again followed by 5d-atomic orbitals and 6p-atomic orbitals.  Green colored orbital corresponds to 4f-atomic orbitals.  Blue colored orbital corresponds to 6s-atomic orbital.  Black colored orbital corresponds to 5d-atomic orbital.  Red colored orbital corresponds to 6p-atomic orbital.

There are 14 electrons present in 4f-atomic orbital, two electrons in 6s-atomic orbital, ten electrons in 5d-atomic orbital and one electron in 6p-atomic orbital.  Therefore, the ground-state electron configuration of Tl is [Xe]4f145d106s26p1.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 7 Solutions

General Chemistry

Ch. 7.5 - Prob. 1RCCh. 7.6 - Prob. 1RCCh. 7.7 - Prob. 1PECh. 7.7 - Prob. 2PECh. 7.7 - Prob. 1RCCh. 7.8 - Prob. 1PECh. 7.8 - Prob. 2PECh. 7.8 - Prob. 3PECh. 7.8 - Prob. 1RCCh. 7.9 - Prob. 1PECh. 7.9 - Prob. 1RCCh. 7 - Prob. 7.1QPCh. 7 - Prob. 7.2QPCh. 7 - Prob. 7.3QPCh. 7 - Prob. 7.4QPCh. 7 - Prob. 7.5QPCh. 7 - Prob. 7.6QPCh. 7 - Prob. 7.7QPCh. 7 - 7.8 (a) What is the frequency of tight having a...Ch. 7 - Prob. 7.9QPCh. 7 - Prob. 7.10QPCh. 7 - Prob. 7.11QPCh. 7 - 7.12 The SI unit of length is the meter, which...Ch. 7 - 7.13 What are photons? What role did Einstein's...Ch. 7 - Prob. 7.14QPCh. 7 - Prob. 7.15QPCh. 7 - Prob. 7.16QPCh. 7 - Prob. 7.17QPCh. 7 - Prob. 7.18QPCh. 7 - Prob. 7.19QPCh. 7 - Prob. 7.20QPCh. 7 - Prob. 7.21QPCh. 7 - Prob. 7.22QPCh. 7 - Prob. 7.23QPCh. 7 - Prob. 7.24QPCh. 7 - Prob. 7.25QPCh. 7 - Prob. 7.26QPCh. 7 - Prob. 7.27QPCh. 7 - Prob. 7.28QPCh. 7 - Prob. 7.29QPCh. 7 - Prob. 7.30QPCh. 7 - Prob. 7.31QPCh. 7 - Prob. 7.32QPCh. 7 - Prob. 7.33QPCh. 7 - Prob. 7.34QPCh. 7 - Prob. 7.35QPCh. 7 - Prob. 7.36QPCh. 7 - Prob. 7.37QPCh. 7 - Prob. 7.38QPCh. 7 - Prob. 7.39QPCh. 7 - Prob. 7.40QPCh. 7 - Prob. 7.41QPCh. 7 - 7.42 What is the de Broglie wavelength (in nm)...Ch. 7 - Prob. 7.43QPCh. 7 - Prob. 7.44QPCh. 7 - Prob. 7.45QPCh. 7 - Prob. 7.46QPCh. 7 - Prob. 7.47QPCh. 7 - Prob. 7.48QPCh. 7 - 7.49 Why is a boundary surface diagram useful in...Ch. 7 - Prob. 7.50QPCh. 7 - Prob. 7.51QPCh. 7 - Prob. 7.52QPCh. 7 - Prob. 7.53QPCh. 7 - Prob. 7.54QPCh. 7 - Prob. 7.55QPCh. 7 - Prob. 7.56QPCh. 7 - Prob. 7.57QPCh. 7 - 7.58 What is the difference between a 2px and a...Ch. 7 - Prob. 7.59QPCh. 7 - Prob. 7.60QPCh. 7 - Prob. 7.61QPCh. 7 - Prob. 7.62QPCh. 7 - Prob. 7.63QPCh. 7 - Prob. 7.64QPCh. 7 - 7.65 Make a chart of all allowable orbitals in the...Ch. 7 - 7.66 Why do the 3s, 3p, and 3d orbitals have the...Ch. 7 - Prob. 7.67QPCh. 7 - Prob. 7.68QPCh. 7 - Prob. 7.69QPCh. 7 - Prob. 7.70QPCh. 7 - Prob. 7.71QPCh. 7 - Prob. 7.72QPCh. 7 - Prob. 7.73QPCh. 7 - Prob. 7.74QPCh. 7 - Prob. 7.75QPCh. 7 - Prob. 7.76QPCh. 7 - Prob. 7.77QPCh. 7 - 7.78 Comment on the correctness of the following...Ch. 7 - Prob. 7.79QPCh. 7 - Prob. 7.80QPCh. 7 - Prob. 7.81QPCh. 7 - Prob. 7.82QPCh. 7 - Prob. 7.83QPCh. 7 - Prob. 7.84QPCh. 7 - Prob. 7.85QPCh. 7 - Prob. 7.86QPCh. 7 - Prob. 7.87QPCh. 7 - Prob. 7.88QPCh. 7 - Prob. 7.89QPCh. 7 - Prob. 7.90QPCh. 7 - Prob. 7.91QPCh. 7 - Prob. 7.92QPCh. 7 - Prob. 7.93QPCh. 7 - Prob. 7.94QPCh. 7 - 7.95 Identify the following individuals and their...Ch. 7 - Prob. 7.96QPCh. 7 - Prob. 7.97QPCh. 7 - Prob. 7.98QPCh. 7 - Prob. 7.99QPCh. 7 - 7.100 A laser is used in treating retina...Ch. 7 - 7.101 A 368-g sample of water absorbs infrared...Ch. 7 - Prob. 7.102QPCh. 7 - Prob. 7.103QPCh. 7 - Prob. 7.104QPCh. 7 - Prob. 7.105QPCh. 7 - Prob. 7.106QPCh. 7 - Prob. 7.107QPCh. 7 - Prob. 7.108QPCh. 7 - Prob. 7.109QPCh. 7 - Prob. 7.110QPCh. 7 - Prob. 7.111QPCh. 7 - 7.112 An atom moving at its root-mean-square speed...Ch. 7 - Prob. 7.113QPCh. 7 - Prob. 7.114QPCh. 7 - Prob. 7.115QPCh. 7 - Prob. 7.116QPCh. 7 - Prob. 7.117SPCh. 7 - Prob. 7.118SPCh. 7 - Prob. 7.119SPCh. 7 - Prob. 7.120SPCh. 7 - 7.121 According to Einstein’s special theory of...Ch. 7 - Prob. 7.122SPCh. 7 - Prob. 7.123SPCh. 7 - Prob. 7.124SPCh. 7 - Prob. 7.125SPCh. 7 - 7.126 The wave function for the 2s orbital in the...Ch. 7 - Prob. 7.127SPCh. 7 - Prob. 7.128SPCh. 7 - Prob. 7.129SP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Quantum Numbers, Atomic Orbitals, and Electron Configurations; Author: Professor Dave Explains;https://www.youtube.com/watch?v=Aoi4j8es4gQ;License: Standard YouTube License, CC-BY
QUANTUM MECHANICAL MODEL/Atomic Structure-21E; Author: H to O Chemistry;https://www.youtube.com/watch?v=mYHNUy5hPQE;License: Standard YouTube License, CC-BY