Mechanics of Materials
Mechanics of Materials
9th Edition
ISBN: 9780133254426
Author: Russell C. Hibbeler
Publisher: Prentice Hall
bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 7, Problem 7.71RP

The beam is fabricated from four boards nailed together as shown. Determine the shear force each nail along the sides C and the top D must resist if the nails are uniformly spaced at s=3 in. The beam is subjected to a shear of V=4.5 kip.

Chapter 7, Problem 7.71RP, The beam is fabricated from four boards nailed together as shown. Determine the shear force each

Expert Solution & Answer
Check Mark
To determine

The shear force (FC) each nails along the side C.

The shear force (FD) each nails along the top D.

Answer to Problem 7.71RP

The shear force (FC) each nails along the side C is 197lb_.

The shear force (FD) each nails along the top D is 1.38kip_.

Explanation of Solution

Given information:

The shear force is 4.5kip.

The uniform nail spacing is 3 in.

Calculation:

Sketch the diagram of the T section as shown in Figure 1.

Mechanics of Materials, Chapter 7, Problem 7.71RP , additional homework tip  1

Refer Figure 1,

The area of the beam is the sum of area of three rectangles 1, 2, and 3.

The dimensions of rectangle 1 as width b1=10in. and depth d1=1in.

The dimensions of rectangle 2 as width b2=4in. and depth d2=2in.

The dimensions of rectangle 2 as width b3=12in. and depth d2=1in.

Find the value of area section 1 as shown below:

a1=b1d1 (1)

Substitute 10 in. for b1 and 1 in. for d1 in Equation (1).

a1=10×1=10in2

Find the value of area section 2 as shown below:

a2=b2d2 (2)

Substitute 4 in. for b2 and 2 in. for d2 in Equation (2).

a2=4×2=8in2

Find the value of area section 3 as shown below:

a3=b3d3 (3)

Substitute 12 in. for b3 and 1 in. for d3 in Equation (3).

a3=12×1=12in2

Calculate the centroid of y¯ as shown in below:

y¯=a1y1+a2y2+a3y3a1+a2+a3 (4)

Here, a1,a2, and a3 area of section 1,2, and 3 and y1,y2 y3 is the centroid of section 1,2, and 3.

Substitute 10in2 for a1, 8in2 for a2, 12in2 for a3, 0.5in. for y1, 2in. for y2, and 7in. for y3 in Equation (4).

y¯=0.5(10)+2×8+7×1210+8+12=5+16+8430=3.5in

Sketch the diagram of y¯ as shown in Figure 2.

Mechanics of Materials, Chapter 7, Problem 7.71RP , additional homework tip  2

Calculate the moment of inertia of the beam (I) as follows:

INA=I1+I2+I3=[b1d1312+a(y¯y1)+b2d2312+a(y¯y2)+b1d1312+a(y3y¯)] (5)

Refer to Figure 2:

The value of y1 is 0.5in.

The value of y2 is 2in.

The value of y3 is 7in.

Substitute 10 in. for b1, 1 in. for d1, 4 in. for b2, 2in for d2, 12 in. for b3, and 1 in. for d2 in Equation (5).

INA=[(10)(13)12+(10)(1)(3.500.5)2+2×4312+2×4(3.502)2+1×12312+1×12(73.50)2]=90.8333+28.6667+291=410.5in4

Calculate the first moment area (QC) as shown in below:

QC=y¯1A (6)

Here, y¯ is the distance between the neutral axis and centroid of the area under consideration and A is the area of cross section.

Refer to Figure 2.

The value of y¯1 is 1.5in..

Substitute 1.5in. for y¯1 and (4×1)in2 for A in Equation (6).

QC=1.5×4×1=6.00in3

Calculate the first moment area (QD) as shown in below:

QD=y¯2A (7)

Here, y¯ is the distance between the neutral axis and centroid of the area under consideration and A is the area of cross section.

Refer to Figure 2.

The value of y¯2 is 3.50in..

Substitute 3.50in. for y¯2 and (12×1)in2 for A in Equation (7).

QC=3.5×12×1=42.0in3

Show the formula for shear flow (qC) as follows:

qC=VQCI (8)

Here, V is the shear force, I is the moment of inertia, and y¯ is the distance between the neutral axis and centroid of the area under consideration.

Substitute 4.5kip for V, 6.00in3 for QC, and 410.5in4 for I in Equation (8).

qC=4.5×103×6.00410.5=27,000410.5=65.773lb/in.

Show the formula for shear flow (qD) as follows:

qD=VQDI (9)

Here, V is the shear force, I is the moment of inertia, and y¯ is the distance between the neutral axis and centroid of the area under consideration.

Substitute 4.5kip for V, 42.0in3 for QD, and 410.5in4 for I in Equation (9).

qD=4.5×103×42.0410.5=189,000410.5=460.414lb/in.

Calculate the shear force (FC) using the relation:

FC=qCs (10)

Here, s is the spacing and qC is the shear flow at point C.

Substitute 65.773lb/in. for qC and 3 in. for s in Equation (10).

FC=65.773×3=197lb

Hence, the shear force (FC) resisted nail at C is 197lb_.

Calculate the shear force (FD) using the relation:

FD=qDs (11)

Here, s is the spacing and qD is the shear flow at point D.

Substitute 460.41lb/in. for qD and 3 in. for s in Equation (11).

FD=460.41lb/in.×3=1.38kip

Hence, the shear force (FD) resisted nail at D is 1.38kip_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
5. Estimate the friction pressure gradient in a 10.15 cm bore unheated horizontal pipe for the following conditions: Fluid-propylene Pressure 8.175 bar Temperature-7°C Mass flow of liquid-2.42 kg/s. Density of liquid-530 kg/m³ Mass flow of vapour-0.605 kg/s. Density of vapour-1.48 kg/m³
Describe the following HVAC systems. a)      All-air systems b)      All-water systems c)      Air-water systems   Graphically represent each system with a sketch.
Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min 1 L/min B y(t) 100 L y(0) = 20 kg 2 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t≥ 0: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.

Chapter 7 Solutions

Mechanics of Materials

Ch. 7.2 - Prob. 7.5PCh. 7.2 - The wood beam has an allowable shear stress of...Ch. 7.2 - The shaft is supported by a thrust bearing at A...Ch. 7.2 - The shaft is supported by a thrust bearing at A...Ch. 7.2 - Determine the largest shear force V that the...Ch. 7.2 - If the applied shear force V = 18 kip, determine...Ch. 7.2 - The overhang beam is subjected to the uniform...Ch. 7.2 - *7-12. The beam has a rectangular cross section...Ch. 7.2 - Determine the maximum shear stress in the strut if...Ch. 7.2 - Determine the maximum shear force V that the strut...Ch. 7.2 - 7-15. The strut is subjected to a vertical shear...Ch. 7.2 - Prob. 7.16PCh. 7.2 - If the beam is subjected to a shear of V=15 kN,...Ch. 7.2 - If the wide-flange beam is subjected to a shear of...Ch. 7.2 - If the wide-flange beam is subjected to a shear of...Ch. 7.2 - Prob. 7.20PCh. 7.2 - If the beam is made from wood having an allowable...Ch. 7.2 - Determine the shear stress at point B on the web...Ch. 7.2 - Determine the maximum shear stress acting at...Ch. 7.2 - Prob. 7.24PCh. 7.2 - 7-25. Determine the maximum shear stress in the...Ch. 7.2 - 7-26. The beam has a square cross section and is...Ch. 7.2 - The beam is slit longitudinally along both sides....Ch. 7.2 - The beam is to be cut longitudinally along both...Ch. 7.2 - The beam has a rectangular cross section and is...Ch. 7.2 - The beam in Fig.6-48f is subjected to a fully...Ch. 7.3 - The two identical boards are bolted together to...Ch. 7.3 - Two identical 20-mm-thick plates are bolted to the...Ch. 7.3 - The boards are bolted together to form the...Ch. 7.3 - The boards are bolted together to form the...Ch. 7.3 - Prob. 7.32PCh. 7.3 - Prob. 7.33PCh. 7.3 - Prob. 7.34PCh. 7.3 - Prob. 7.35PCh. 7.3 - Prob. 7.36PCh. 7.3 - Prob. 7.37PCh. 7.3 - Prob. 7.38PCh. 7.3 - A beam is constructed from three boards bolted...Ch. 7.3 - The simply supported beam is built up from three...Ch. 7.3 - The simply supported beam is built up from three...Ch. 7.3 - The T-beam is constructed as shown. If each nail...Ch. 7.3 - Prob. 7.43PCh. 7.3 - Prob. 7.44PCh. 7.3 - Prob. 7.45PCh. 7.3 - 7–46. The beam is subjected to a shear of V = 800...Ch. 7.3 - The beam is made from four boards nailed together...Ch. 7.3 - The beam is made from three polystyrene strips...Ch. 7.5 - A shear force of V=300 kN is applied to the box...Ch. 7.5 - A shear force of V=450 kN is applied to the box...Ch. 7.5 - A shear force of V = 18 kN is applied to the box...Ch. 7.5 - A shear force of V = 18 kN is applied to the box...Ch. 7.5 - The aluminum strut is 10 mm thick and has the...Ch. 7.5 - The aluminum strut is 10 mm thick and has the...Ch. 7.5 - Prob. 7.56PCh. 7.5 - Prob. 7.57PCh. 7.5 - Prob. 7.58PCh. 7.5 - Prob. 7.59PCh. 7.5 - The built-up beam is formed by welding together...Ch. 7.5 - The assembly is subjected to a vertical shear of V...Ch. 7.5 - 7–62. Determine the shear-stress variation over...Ch. 7.5 - 7–63. Determine the location e of the shear...Ch. 7.5 - Determine the location e of the shear center,...Ch. 7.5 - The beam supports a vertical shear of V=7 kip....Ch. 7.5 - The stiffened beam is constructed from plates...Ch. 7.5 - The pipe is subjected to a shear force of V=8 kip....Ch. 7.5 - *7–68. A thin plate of thickness t is bent to form...Ch. 7.5 - A thin plate of thickness t is bent to form the...Ch. 7.5 - 7–70. Determine the location e of the shear...Ch. 7 - The beam is fabricated from four boards nailed...Ch. 7 - The T-beam is subjected to a shear of V = 150 kN....Ch. 7 - The member is subject to a shear force of V = 2...Ch. 7 - Determine the shear stress at points B and C on...Ch. 7 - Determine the maximum shear stress acting at...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanics of Materials Lecture: Beam Design; Author: UWMC Engineering;https://www.youtube.com/watch?v=-wVs5pvQPm4;License: Standard Youtube License