(a)
Interpretation:
The boiling and freezing points of a
Concept introduction:
Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.
Answer to Problem 7.66E
The boiling and freezing points of a
Explanation of Solution
The formula to calculate boiling point is given below as,
Where,
•
•
•
Since urea is a nonelectrolyte, it will not dissociate in the solution and the value of
Substitute the value of
Now, the boiling point of water solution can be calculated by adding value of
The formula to calculate freezing point is given below as,
Where,
•
•
•
Since urea is a nonelectrolyte, it will not dissociate in the solution and the value of
Substitute the value of
Now, the freezing point of water solution can be calculated by subtracting value of
The boiling and freezing points of a
(b)
Interpretation:
The boiling and freezing points of a
Concept introduction:
Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.
Answer to Problem 7.66E
The boiling and freezing points of a
Explanation of Solution
The formula to calculate boiling point is given below as,
Where,
•
•
•
Since
Substitute the value of
Now, the boiling point of water solution can be calculated by adding value of
The formula to calculate freezing point is given below as,
Where,
•
•
•
Since
Substitute the value of
Now, the freezing point of water solution can be calculated by subtracting value of
The boiling and freezing points of a
(c)
Interpretation:
The boiling and freezing points of a solution containing
Concept introduction:
Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.
Answer to Problem 7.66E
The boiling and freezing points of a solution containing
Explanation of Solution
The formula to calculate number of moles of solutes is given below as,
The molar mass of ethylene glycol can be calculated as follows.
Substitute the values in the above equation as follows.
The formula to calculate molarity is given below as,
Substitute the value of number of moles of solute and volume of solution in the above equation as follows.
The formula to calculate boiling point is given below as,
Where,
•
•
•
Since ethylene glycol is a nonelectrolyte, it will not dissociate in the solution and the value of
Substitute the value of
Now, the boiling point of water solution can be calculated by adding value of
The formula to calculate freezing point is given below as,
Where,
•
•
•
Since ethylene glycol is a nonelectrolyte, it will not dissociate in the solution and the value of
Substitute the value of
Now, the freezing point of water solution can be calculated by subtracting value of
The boiling and freezing points of a solution containing
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry for Today: General Organic and Biochemistry
- In an induced absorption process:a) the population of the fundamental state is diminishingb) the population of the excited state decreasesc) the non-radiating component is the predominant oned) the emission radiation is consistentarrow_forwardhow a - Cyanostilbenes are made? provide 3 different methods for their synthesisarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Don't used Ai solutionarrow_forwardDraw a Lewis dot structure for C2H4Oarrow_forward3.3 Consider the variation of molar Gibbs energy with pressure. 3.3.1 Write the mathematical expression for the slope of graph of molar Gibbs energy against 3.3.2 pressure at constant temperature. Draw in same diagram graphs showing variation with pressure of molar Gibbs energies of a substance in gaseous, liquid and solid forms at constant temperature. 3.3.3 Indicate in your graphs melting and boiling points. 3.3.4 Indicate for the respective phases the regions of relative stability.arrow_forward
- In 2-chloropropane, the signal for the H on the C next to Cl should be split into how many peaks?arrow_forward4.4 Consider as perfect gas 3.0 mol of argon gas to which 229 J of energy is supplied as heat at constant pressure and temperature increases by 2.55 K. Calculate 4.4.1 constant pressure molar heat capacity. 4.4.2 constant volume molar heat capacity.arrow_forward3.2 32 Consider calibrating a calorimeter and measuring heat transferred. A sample of compound was burned in a calorimeter and a temperature change of 3.33°C recorded. When a 1.23 A current from a 12.0 V source was passed through a heater in the same calorimeter for 156 s, the temperature changed of 4.47°C was recorded. 3.2.1 Calculate the heat supplied by the heater. 3.2.2 Calculate the calorimeter constant. 3.2.3 Calculate the heat released by the combustion reaction.arrow_forward
- -.1 Consider the standard enthalpy of formation of gaseous water at 25°C as -241.82 kJ/mol and calculate the standard enthalpy of formation of gaseous water at 100°C.arrow_forward3.5 Complete the following sentences to make correct scientific meaning. 3.5.1 The entropy of a perfect gas. 3.5.2 when it expands isothermally. The change in entropy of a substance accompanying a change of state at its transition 3.5.3 temperature is calculated from its of transition. The increase in entropy when a substance is heated is calculated from itsarrow_forward3.4 Consider the internal energy of a substance 3.4.1 Draw a graph showing the variation of internal energy with temperature at constant volume 3.4.2 Write the mathematical expression for the slope in your graph in 3.4.1arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co