(a)
Interpretation:
The maximum numbers of electrons which can occupy in the given subshells should be identified using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
Pauli Exclusion Principle
No two electrons in an atom should have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of ms. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. If two electrons have the same values of n, l and ml values, they should have different values of ms.
To find: Count the maximum number of electrons which can occupy in 3s-subshell
Find the value of ‘l’ for 3s-subshell
When the angular momentum quantum number (l) is 0, it corresponds to a s subshell for n = 3.
Find the value of ‘ml’ for 3s-subshell.
(a)
Answer to Problem 7.65QP
The maximum number of electrons which can occupy in 3s-subshell is 2 (a).
Explanation of Solution
If l = 0, the number of possible magnetic quantum number (ml) values are calculated using the formula (2l + 1) for 3s-subshell. Here, (2(0) + 1) = 1 results. Therefore, there is only one number of orbital present in 3s-subshell.
Count the maximum number of electrons in 3s-subshell
One 3s-atomic orbital has two electrons which is the maximum number of electrons in it. Therefore, the maximum number of electrons which can occupy in 3s-subshell is 2.
(b)
Interpretation:
The maximum numbers of electrons which can occupy in the given subshells should be identified using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (ml) and the electron spin quantum number (ms). Each atomic orbital in an atom is categorized by a unique set of the quantum numbers.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
Pauli Exclusion Principle
No two electrons in an atom should have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of ms. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. If two electrons have the same values of n, l and ml values, they should have different values of ms.
To find: Count the maximum number of electrons which can occupy in 3d-subshell
Find the value of ‘l’ for 3d-subshell
When the angular momentum quantum number (l) is 2, it corresponds to a d subshell for n = 3.
Find the value of ‘ml’ for 3d-subshell
(b)
Answer to Problem 7.65QP
The maximum number of electrons which can occupy in 3d-subshell is 10 (b).
Explanation of Solution
If l = 2, the number of possible magnetic quantum number (ml) values are calculated using the formula (2l + 1) for 3d-subshell. Here, (2(2) + 1) = 5 results. Therefore, there are five orbitals present in 3d-subshell.
Count the maximum number of electrons in 3d-subshell
One 3d-atomic orbital has two electrons. So, five 3d-atomic orbitals have ten electrons which is the maximum number of electrons in it. Therefore, the maximum number of electrons which can occupy in 3d-subshell is 10.
(c)
Interpretation:
The maximum numbers of electrons which can occupy in the given subshells should be identified using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (ml) and the electron spin quantum number (ms). Each atomic orbital in an atom is categorized by a unique set of the quantum numbers.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
Pauli Exclusion Principle
No two electrons in an atom should have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of ms. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. If two electrons have the same values of n, l and ml values, they should have different values of ms.
To find: Count the maximum number of electrons which can occupy in 4p-subshell
Find the value of ‘l’ for 4p-subshell
When the angular momentum quantum number (l) is 1, it corresponds to a p subshell for n = 4.
Find the value of ‘ml’ for 4p-subshell
(c)
Answer to Problem 7.65QP
The maximum number of electrons which can occupy in 4p-subshell is 6 (c).
Explanation of Solution
If l = 1, the number of possible magnetic quantum number (ml) values are calculated using the formula (2l + 1) for 4p-subshell. Here, (2(1) + 1) = 3 results. Therefore, there are three orbitals present in 4p-subshell.
Count the maximum number of electrons in 4p-subshell
One 4p-atomic orbital has two electrons. So, three 4p-atomic orbitals have six electrons which is the maximum number of electrons in it. Therefore, the maximum number of electrons which can occupy in 4p-subshell is 6.
(d)
Interpretation:
The maximum numbers of electrons which can occupy in the given subshells should be identified using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (ml) and the electron spin quantum number (ms). Each atomic orbital in an atom is categorized by a unique set of the quantum numbers.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
Pauli Exclusion Principle
No two electrons in an atom should have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of ms. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. If two electrons have the same values of n, l and ml values, they should have different values of ms.
To find: Count the maximum number of electrons which can occupy in 4f-subshell
Find the value of ‘l’ for 4f-subshell
When the angular momentum quantum number (l) is 3, it corresponds to a f subshell for n = 4.
Find the value of ‘ml’ for 4f-subshell
(d)
Answer to Problem 7.65QP
The maximum number of electrons which can occupy in 4f-subshell is 14 (d).
Explanation of Solution
If l = 3, the number of possible magnetic quantum number (ml) values are calculated using the formula (2l + 1) for 4f-subshell. Here, (2(3) + 1) = 7 results. Therefore, there are seven orbitals present in 4f-subshell.
Count the maximum number of electrons in 4f-subshell
One 4f-atomic orbital has two electrons. So, seven 4f-atomic orbitals have 14 electrons which is the maximum number of electrons in it. Therefore, the maximum number of electrons which can occupy in 4f-subshell is 14.
(e)
Interpretation:
The maximum numbers of electrons which can occupy in the given subshells should be identified using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the angular momentum quantum number (l), the magnetic quantum number (ml) and the electron spin quantum number (ms). Each atomic orbital in an atom is categorized by a unique set of the quantum numbers.
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in Bohr’s model of the hydrogen atom. If all orbitals have the same value of ‘n’, they are said to be in the same shell (level). The total number of orbitals for a given n value is n2. As the value of ‘n’ increases, the energy of the electron also increases.
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
Electron Spin Quantum Number (ms)
It specifies the orientation of the spin axis of an electron. An electron can spin in only one of two directions. There are two possible ways to represent ms values. They are +½ and ‒½. One electron spins in the clockwise direction. Another electron spins in the anticlockwise direction. But, no two electrons should have the same spin quantum number.
Pauli Exclusion Principle
No two electrons in an atom should have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of ms. As an orbital can contain a maximum of only two electrons, the two electrons must have opposing spins. If two electrons have the same values of n, l and ml values, they should have different values of ms.
To find: Count the maximum number of electrons which can occupy in 5f-subshell
Find the value of ‘l’ for 5f-subshell
When the angular momentum quantum number (l) is 3, it corresponds to a f subshell for n = 5.
Find the value of ‘ml’ for 5f-subshell
(e)
Answer to Problem 7.65QP
The maximum number of electrons which can occupy in 5f-subshell is 14 (e).
Explanation of Solution
If l = 3, the number of possible magnetic quantum number (ml) values are calculated using the formula (2l + 1) for 5f-subshell. Here, (2(3) + 1) = 7 results. Therefore, there are seven orbitals present in 5f-subshell.
Count the maximum number of electrons in 5f-subshell
One 5f-atomic orbital has two electrons. So, seven 5f-atomic orbitals have 14 electrons which is the maximum number of electrons in it. Therefore, the maximum number of electrons which can occupy in 5f-subshell is 14.
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry
- For each of the following elements, specify the extent to which the subshell containing the distinguishing electron is filled (s2, p3, p5, d4, etc.). a. 13Al b. 23V c. 20Ca d. 36Krarrow_forwardHow many electron orbitals are there of each of the subshell types listed in Problem 3-68? a. 3p b. 4p c. 6s d. 4darrow_forwardWhat is the number of different orbitals in each of the following subshells? a 3d b 4f c 4p d 5sarrow_forward
- What is the maximum number of electrons that can occupy a f subshell (l = 3)?arrow_forwardAssign a correct set of four quantum numbers for (a) Each electron in a nitrogen atom. (b) The valence electron in a sodium atom. (c) A 3d electron in a nickel atom.arrow_forwardHow many unpaired electrons are there in an atom of (a) phosphorus? (b) potassium? (c) plutonium (Pu)?arrow_forward
- 1. Which of the following is not a correct representation of an orbital? 3s 3p 3d 3farrow_forwardWhich of the following sets of quantum numbers correctly represents a 4p orbital? (a) n = 4, = 0, m = 1 (b) n = 4, = 1, m = 0 (c) n = 4, = 2, m = 1 (d) n = 4, = 1, m =2arrow_forwardBased on the Aufbau principle and the n + rule, which of following statements is correct? (a) the 4s orbital fills before the 4p orbitals (b) the 5d orbitals fill before the 6s orbital (c) the 3d orbitals fill before the 3p orbitals (d) the 4f orbitals fill before the 5p orbitalsarrow_forward
- According to a relationship developed by Niels Bohr, for an atom or ion that has a single electron, the total energy, En, of an electron in a stable orbit of quantum number n is En = [Z2/n2] (2.179 1018 J) where Z is the atomic number. Calculate the ionization energy for the electron in a ground-state He+ ion.arrow_forwardDescribe briefly why the study of electromagnetic radiation has been important to our understanding of the arrangement of electrons in atoms.arrow_forwardOn which quantum numbers does the energy of an electron depend in each of the following? a. a one-electron atom or ion b. an atom or ion with more than one electronarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning