Concept explainers
The He+ ion contains only one electron and is therefore a hydrogenlike ion. Calculate the wavelengths, in increasing order, of the first four transitions in the Balmer series of the He+ ion. Compare these wavelengths with the same transitions in a H atom. Comment on the differences. (The Rydberg constant for He+ is 8.72 × 10−18 J.)
Interpretation:
The wavelengths in the increasing order of the first four transitions in the Balmer series of the
Concept Introduction:
Absorption refers to how much light can be taken in by the material being measured.
Emission spectrum:
When electromagnetic radiation interacts with matter, atoms and molecules may absorb energy and reach to a higher energy state. With higher energy, these are in an unstable state. For returning to their normal (more stable, lower energy) energy state, the atoms and molecules emit radiations in various regions of the electromagnetic spectrum. The spectrum of radiation emitted by a substance that has absorbed energy is called an emission spectrum.
In 1885, Johann Balmer developed a simple equation which could be used to calculate the wavelengths of the four visible lines in the emission spectrum of hydrogen. Johannes Rydberg developed Balmer’s equation further, giving an equation which could calculate the visible wavelengths and also those of all hydrogen’s spectral lines.
This equation is known as the Rydberg equation. Here,
Answer to Problem 7.112QP
The wavelengths of the first four transitions in the Balmer series of the
Explanation of Solution
When one of helium’s electrons is removed, the resulting species is the helium ion,
Here, the Rydberg constant for
For the transition
The negative sign indicates that the emission of light occurs. Wavelengths are always positive signs. Here,
For the transition
For the transition
For the transition
The Rydberg constant for
The negative sign indicates that the emission of light occurs. Wavelengths are always positive signs. Here,
For the transition
For the transition
For the transition
All the Balmer transitions for
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry
Additional Science Textbook Solutions
Chemistry & Chemical Reactivity
Introductory Chemistry (5th Edition) (Standalone Book)
Organic Chemistry
Chemistry: Structure and Properties
Introductory Chemistry (6th Edition)
General, Organic, & Biological Chemistry
- A baseball weighs 142 g. A professional pitcher throws a fast ball at a speed of 100 mph and a curve ball at 80 mph. What wavelengths are associated with the motions of the baseball? If the uncertainty in the position of the ball is 12 wavelength, which ball (fast ball or curve) has a more precisely known position? Can the uncertainty in the position of a curve ball be used to explain why batters frequently miss it?arrow_forwardCalculate the wavelength of the Balmer line of the hydrogen spectrum in which the initial n quantum number is 5 and the final n quantum number is 2.arrow_forwardShow that the value of the Rydberg constant per photon, 2.179 1018 J, is equivalent to 1312 kJ/mol photons.arrow_forward
- • identify an orbital (as 1s, 3p, etc.) from its quantum numbers, or vice versa.arrow_forwardInvestigating Energy Levels Consider the hypothetical atom X that has one electron like the H atom but has different energy levels. The energies of an electron in an X atom are described by the equation E=RHn3 where RH is the same as for hydrogen (2.179 1018 J). Answer the following questions, without calculating energy values. a How would the ground-state energy levels of X and H compare? b Would the energy of an electron in the n = 2 level of H be higher or lower than that of an electron in the n = 2 level of X? Explain your answer. c How do the spacings of the energy levels of X and H compare? d Which would involve the emission of a higher frequency of light, the transition of an electron in an H atom from the n = 5 to the n = 3 level or a similar transition in an X atom? e Which atom, X or H, would require more energy to completely remove its electron? f A photon corresponding to a particular frequency of blue light produces a transition from the n = 2 to the n = 5 level of a hydrogen atom. Could this photon produce the same transition (n = 12 to n = 5) in an atom of X? Explain.arrow_forwardIn 1885, Johann Balmer, a mathematician, derived the following relation for the wavelength of lines in the visible spectrum of hydrogen =364.5 n2( n2 4) where in nanometers and n is an integer that can be 3, 4, 5, . . . Show that this relation follows from the Bohr equation and the equation using the Rydberg constant. Note that in the Balmer series, the electron is returning to the n=2 level.arrow_forward
- An FM radio station found at 103.1 on the FM dial broadcasts at a frequency of 1.031188s1 (103.1 MHz). What is the wavelength of these radio waves in meters?arrow_forwardWhich of the following is a valid set of quantum numbers for an electron in a hydrogen atom? (a) n = 1, = 0, m = 0, ms = 1 (b) n = 1, = 1, m = 0, ms = 1/2 (c) n = 1, = 0, m = 1, ms = + 1/2 (d) n = 1, = 0, m = 0, ms = 1/2arrow_forwardWhat experimental evidence supports the quantum theory of light? Explain the wave-particle duality of all matter .. For what size particles must one consider both the wave and the particle properties?arrow_forward
- According to a relationship developed by Niels Bohr, for an atom or ion that has a single electron, the total energy, En, of an electron in a stable orbit of quantum number n is En = [Z2/n2] (2.179 1018 J) where Z is the atomic number. Calculate the ionization energy for the electron in a ground-state He+ ion.arrow_forwardAs the weapons officer aboard the Srarship Chemistry, it is your duty to configure a photon torpedo to remove an electron from the outer hull of an enemy vessel. You know that the work function (the binding energy of the electron) of the hull of the enemy ship is 7.52 1019 J. a. What wavelength does your photon torpedo need to be to eject an electron? b. You find an extra photon torpedo with a wavelength of 259 nm and fire it at the enemy vessel. Does this photon torpedo do any damage to the ship (does it eject an electron)? c. If the hull of the enemy vessel is made of the element with an electron configura tion of [Ar]4s13d10, what metal is this?arrow_forwardWhy is the electron in a Bohr hydrogen atom bound less tightly when it has a quantum number of 3 than when it has a quantum number of 1?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning