Why is the following situation impossible ? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The hall launcher in the machine sends metal halls up one side of the machine and then into play. The spring in the launcher (Fig. P7.44) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined θ = 10.0° with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting. Figure P7.44
Why is the following situation impossible ? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The hall launcher in the machine sends metal halls up one side of the machine and then into play. The spring in the launcher (Fig. P7.44) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined θ = 10.0° with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting. Figure P7.44
Solution Summary: The author explains that the ball launcher contains spring that sends metals balls up one side of the machine and then into play.
Why is the following situation impossible? In a new casino, a supersized pinball machine is introduced. Casino advertising boasts that a professional basketball player can lie on top of the machine and his head and feet will not hang off the edge! The hall launcher in the machine sends metal halls up one side of the machine and then into play. The spring in the launcher (Fig. P7.44) has a force constant of 1.20 N/cm. The surface on which the ball moves is inclined θ = 10.0° with respect to the horizontal. The spring is initially compressed its maximum distance d = 5.00 cm. A ball of mass 100 g is projected into play by releasing the plunger. Casino visitors find the play of the giant machine quite exciting.
In an electron gun, electrons are accelerated through a region with an electric field of magnitude 1.5 × 104 N/C for a distance of 2.5 cm. If the electrons start from rest, how fast are they moving after traversing the gun?
Please solve and answer this problem correctly please. Thank you!!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.