Physics for Scientists and Engineers, Volume 1
9th Edition
ISBN: 9781133954156
Author: Raymond A. Serway
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.5OQ
To determine
Rank from the largest to the smallest the following dot products.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sky diver of mass 90 kg (with suit and gear) is falling at terminal speed. What is the upward force of air drag, and how do you know?
A car is traveling at top speed on the Bonneville salt flats while attempting a land speed record. The tires exert 25 kN of force in the backward direction on the ground. Why backwards? How large are the forces resisting the forward motion of the car, and why?
A bee strikes a windshield of a car on the freeway and gets crushed. What can you conclude about the force on the bee versus the force on the windshield, and on what principle is this based?
Chapter 7 Solutions
Physics for Scientists and Engineers, Volume 1
Ch. 7 - Prob. 7.1QQCh. 7 - Figure 7.4 shows four situations in which a force...Ch. 7 - Which of the following statements is true about...Ch. 7 - A dart is inserted into a spring-loaded dart gun...Ch. 7 - A dart is inserted into a spring-loaded dart gun...Ch. 7 - Choose the correct answer. The gravitational...Ch. 7 - A ball is connected to a light spring suspended...Ch. 7 - What does the slope of a graph of U(x) versus x...Ch. 7 - Alex and John are loading identical cabinets onto...Ch. 7 - If the net work done by external forces on a...
Ch. 7 - A worker pushes a wheelbarrow with a horizontal...Ch. 7 - A cart is set rolling across a level table, at the...Ch. 7 - Prob. 7.5OQCh. 7 - Is the work required to be done by an external...Ch. 7 - A bloc k, of mass m is dropped from the fourth...Ch. 7 - An a simple pendulum swings back and forth, the...Ch. 7 - Bullet 2 has twice the mass of bullet 1. Both are...Ch. 7 - Figure OQ7.10 shows a light extended spring...Ch. 7 - If the speed of a particle is doubled, what...Ch. 7 - Prob. 7.12OQCh. 7 - Prob. 7.13OQCh. 7 - A certain spring that obeys Hookes law is...Ch. 7 - A cart is set rolling across a level table, al the...Ch. 7 - An ice cube has been given a push and slides...Ch. 7 - Can a normal force do work? If not, why not? If...Ch. 7 - Object 1 pushes on object 2 as the objects move...Ch. 7 - A student has the idea that the total work done on...Ch. 7 - (a) For what values of the angle between two...Ch. 7 - Prob. 7.5CQCh. 7 - Discuss the work done by a pitcher throwing a...Ch. 7 - Prob. 7.7CQCh. 7 - If only one external force acts on a particle,...Ch. 7 - Prob. 7.9CQCh. 7 - Prob. 7.10CQCh. 7 - A certain uniform spring has spring constant k....Ch. 7 - Prob. 7.12CQCh. 7 - Does the kinetic energy of an object depend on the...Ch. 7 - Cite two examples in which a force is exerted on...Ch. 7 - A shopper in a supermarket pushes a cart with a...Ch. 7 - A raindrop of mass 3.35 10-5 kg falls vertically...Ch. 7 - In 1990, Walter Arfeuille of Belgium lifted a...Ch. 7 - The record number of boat lifts, including the...Ch. 7 - A block of mass m = 2.50 kg is pushed a distance d...Ch. 7 - Spiderman, whose mass is 80.0 kg, is dangling on...Ch. 7 - Prob. 7.7PCh. 7 - Vector A has a magnitude of 5.00 units, and vector...Ch. 7 - Prob. 7.9PCh. 7 - Find the scalar product of the vectors in Figure...Ch. 7 - A force F = (6i 2j) N acts on a panicle that...Ch. 7 - Using the definition of the scalar product, find...Ch. 7 - Lei B = 5.00 m at 60.0. Let the vector C have the...Ch. 7 - The force acting on a panicle varies as shown in...Ch. 7 - A particle is subject to a force Fx that varies...Ch. 7 - In a control system, an accelerometer consists of...Ch. 7 - When a 4.00-kg object is hung vertically on a...Ch. 7 - Hookes law describes a certain light spring of...Ch. 7 - An archer pulls her bowstring back 0.400 m by...Ch. 7 - A light spring with spring constant 1 200 N/m is...Ch. 7 - A light spring with spring constant k1 is hung...Ch. 7 - Express the units of the force constant of a...Ch. 7 - A cafeteria tray dispenser supports a stack of...Ch. 7 - A light spring with force constant 3.85 N/m is...Ch. 7 - A small particle of mass m is pulled to the top of...Ch. 7 - The force acting on a particle is Fx = (8x 16),...Ch. 7 - When different loads hang on a spring, the spring...Ch. 7 - A 100-g bullet is fired from a rifle having a...Ch. 7 - A force F = (4xi + 3yj), where F is in newtons and...Ch. 7 - Review. The graph in Figure P7.20 specifies a...Ch. 7 - A 3.00-kg object has a velocity (6.00i - 2.00j)...Ch. 7 - Prob. 7.32PCh. 7 - A 0.600-kg particle has a speed of 2.00 m/s at...Ch. 7 - A 4.00-kg particle is subject to a net force that...Ch. 7 - A 2 100-kg pile driver is used to drive a steel...Ch. 7 - Review. In an electron microscope, there is an...Ch. 7 - Review. You can think of the workkinetic energy...Ch. 7 - Review. A 7.80-g bullet moving at 575 m/s strikes...Ch. 7 - Review. A 5.75-kg object passes through the origin...Ch. 7 - A 1 000-kg roller coaster car is initially at the...Ch. 7 - A 0.20-kg stone is held 1.3 m above the top edge...Ch. 7 - A 400-N child is in a swing that is attached to a...Ch. 7 - A 4.00-kg particle moves from the origin to...Ch. 7 - (a) Suppose a constant force acts on an object....Ch. 7 - A force acting on a particle moving in the xy...Ch. 7 - An object moves in the xy plane 111 Figure P7.43...Ch. 7 - Prob. 7.47PCh. 7 - Why is the following situation impossible? A...Ch. 7 - A potential energy function for a system in which...Ch. 7 - A single conservative force acting on a particle...Ch. 7 - A single conservative force acts on a 5.0-kg...Ch. 7 - For the potential energy curve shown in Figure...Ch. 7 - A right circular cone can theoretically be...Ch. 7 - The potential energy function for a system of...Ch. 7 - Prob. 7.55APCh. 7 - A particle moves along the xaxis from x = 12.8 m...Ch. 7 - Two identical steel balls, each of diameter 25.4...Ch. 7 - When an object is displaced by an amount x from...Ch. 7 - A 6 000-kg freight car rolls along rails with...Ch. 7 - Why is the following situation impossible? In a...Ch. 7 - Prob. 7.61APCh. 7 - The spring constant of an automotive suspension...Ch. 7 - An inclined plane of angle = 20.0 has a spring of...Ch. 7 - An inclined plane of angle has a spring of force...Ch. 7 - (a) Take U = 5 for a system with a particle at...Ch. 7 - A particle of mass m = 1.18 kg is attached between...Ch. 7 - Review. A light spring has unstressed length 15.5...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please help by: Use a free body diagram Show the equations State your assumptions Show your steps Box your final answer Thanks!arrow_forwardBy please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardA collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forward
- A number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q(upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardFor each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forwardFour point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…arrow_forward
- Point charges q1=50.0μC and q2=-35μC are placed d1=1.0m apart, as shown. A. A third charge, q3=25μC, is positioned somewhere along the line that passes through the first two charges, and the net force on q3 is zero. Which statement best describes the position of this third charge?1) Charge q3 is to the right of charge q2. 2) Charge q3 is between charges q1 and q2. 3) Charge q3 is to the left of charge q1. B. What is the distance, in meters, between charges q1 and q3? (Your response to the previous step may be used to simplify your solution.)Give numeric value.d2 = __________________________________________mC. Select option that correctly describes the change in the net force on charge q3 if the magnitude of its charge is increased.1) The magnitude of the net force on charge q3 would still be zero. 2) The effect depends upon the numeric value of charge q3. 3) The net force on charge q3 would be towards q2. 4) The net force on charge q3 would be towards q1. D. Select option that…arrow_forwardThe magnitude of the force between a pair of point charges is proportional to the product of the magnitudes of their charges and inversely proportional to the square of their separation distance. Four distinct charge-pair arrangements are presented. All charges are multiples of a common positive charge, q. All charge separations are multiples of a common length, L. Rank the four arrangements from smallest to greatest magnitude of the electric force.arrow_forwardA number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q (upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
GCSE Physics - Vector Diagrams and Resultant Forces #43; Author: Cognito;https://www.youtube.com/watch?v=U8z8WFhOQ_Y;License: Standard YouTube License, CC-BY
TeachNext | CBSE Grade 10 | Maths | Heights and Distances; Author: Next Education India;https://www.youtube.com/watch?v=b_qm-1jHUO4;License: Standard Youtube License