
Interpretation:
A boundary surface diagram useful in representing an atomic orbital should be explained.
Concept Introduction:
The most important characters of atomic orbitals are their overall shapes and relative sizes which are sufficiently represented by boundary surface diagrams. It is resultant of the solution of Schrodinger wave equation. The orbitals are drawn in 3 dimensional which is difficult to draw. In boundary surface diagrams, cross sections are used to get the general idea of their shapes. For example, the boundary surface diagrams of ‘p’ orbitals show that each ‘p’ orbital has two lobes on opposite sides of the nucleus.
The exact position and momentum of an electron cannot be determined (according to Heisenberg uncertainty principle). The probability density of finding an electron in a particular region is calculated. Boundary surface diagram is a boundary surface or a contour surface drawn in a space for an orbital on which the value of probability density |ψ|2 is constant. The boundary surface diagram of constant probability density is considered as a good and acceptable approximation of shape of orbital if the boundary surface encloses the region or volume with probability density of more than 90%. This means that the boundary surface enclosing a constant probability density of let’s say 50% won’t be considered good.
The boundary surface diagram is not taken with constant probability density of 100%. The reason is at any distance from the nucleus, the probability density of finding an electron is never zero. It will always have some finite value, so it is not possible to draw a boundary surface diagram which encloses region with 100% probability density.
Feature of boundary surface diagram
Shape of the surface diagram: The boundary surface diagram of an orbital is independent of principle quantum number. For example: The boundary surface diagram of s orbital is spherical in shape, so it will be spherical for 1s, 2s, 3s and 4s or for any general ‘ns’. The shape doesn’t depend on the principle quantum number (n).
Size of the surface diagram: The boundary surface diagram of an orbital increase in size or volume with increase in the value of principle quantum number (n).
Nodes in the surface diagram: Nodes are the region with very low probability density typically which goes to zero. There are (n-1) nodes in the boundary surface diagram of s-orbital with ‘n’ principle quantum number. This kind of nodes is also observed in the surface diagram of p, d and f orbitals.

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
EBK GENERAL CHEMISTRY: THE ESSENTIAL CO
- true or false, given that a 20.00 mL sample of NaOH took 24.15 mL of 0.141 M HCI to reach the endpoint in a titration, the concentration of the NaOH is 1.17 M.arrow_forwardin the bromothymol blue experiment, pKa was measured. A closely related compound has a Ka of 2.10 x 10-5. What is the pKa?a) 7.1b) 4.7c) 2.0arrow_forwardcalculate the equilibrium concentration of H2 given that K= 0.017 at a constant temperature for this reaction. The inital concentration of HBr is 0.050 M.2HBr(g) ↔ H2(g) + Br2(g)a) 4.48 x 10-2 M b) 5.17 x 10-3 Mc) 1.03 x 10-2 Md) 1.70 x 10-2 Marrow_forward
- true or falsegiven these two equilibria with their equilibrium constants:H2(g) + CI2(l) ↔ 2HCI(g) K= 0.006 CI2(l) ↔ CI2(g) K= 0.30The equilibrium contstant for the following reaction is 1.8H2(g) + CI2 ↔ 2HCI(g)arrow_forwardI2(g) + CI2(g) ↔ 2ICIK for this reaction is 81.9. Find the equilibrium concentration of I2 if the inital concentration of I2 and CI2 are 0.010 Marrow_forwardtrue or false,the equilibrium constant for this reaction is 0.50.PCI5(g) ↔ PCI3(g) + CI2(g)Based on the above, the equilibrium constant for the following reaction is 0.25.2PCI5(g) ↔. 2PCI3(g) + 2CI2(g)arrow_forward
- true or false, using the following equilibrium, if carbon dioxide is added the equilibrium will shift toward the productsC(s) + CO2(g) ↔ 2CO(g)arrow_forward2S2O2/3- (aq) + I2 (aq) ---> S4O2/6- (aq) +2I- (aq) Experiment I2 (M) S2O3- (M) Initital Rate (M/s) 1 0.01 0.01 0.0004 2 0.01 0.02 0.0004 3 0.02 0.01 0.0008 Calculate the overall order for this reaction using the table data a) 3b) 0c) 2d) 1arrow_forwardthe decomposition of N2O5 is the first order with a half-life of 1.98 minutes. If the inital concentration of N2O5 is 0.200 M, what is the concentration after 6 minutes?a) 0.612 Mb) 0.035 Mc) 0.024 Md) 0.100 Marrow_forward
- 20.00 mL of 0.150 M HCI is titrated with 0.075 M NaOH. What volume of NaOH is needed?a) 50 mLb) 20 mLc) 40 mLd) 26.66 mLarrow_forward20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCI. What is the molarity of the HCI?a) 0.150 Mb) 0.079 Mc) 0.025 Md) 0.050 Marrow_forwardin the following reaction, the OH- acts as which of these?NO2- (aq) + H2O (l) ⇌ OH- (aq) + HNO2 (aq)a) not a weak acidb) basec) acidarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





