Concept explainers
Which substance in each of the following pairs would you expect to have the higher boiling point: (a) Ne or Xe, (b) CO2 or CS2, (c) CH4 or Cl2. (d) F2 or LiF, (e) NH3 or PH3? Explain why.
(a)
Interpretation:
The substance with higher boiling point in the given pairs of substances should be determined.
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
- Boiling point is depending upon the strength of inter molecular forces.
Answer to Problem 7.37QP
Explanation of Solution
Therefore, only dispersion forces are presented in these molecules; dispersion forces is depends upon the molecular weight.
Boiling point is depending upon the strength of inter molecular forces.
Hence,
(b)
Interpretation:
The substance with higher boiling point in the given pairs of substances should be determined.
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
- Boiling point is depending upon the strength of inter molecular forces.
Answer to Problem 7.37QP
Explanation of Solution
In
There are two C-S presented in
The result of all the bond polarities are the sum of all the vectors associated with each bonds.
The directions of C-S bond vectors are opposite to each other, so they cancel each other.
Hence,
The vector sum or the result of bond polarities for
Therefore,
Only dispersion forces are present in
In
There are two C-O presented in
The result of all the bond polarities are the sum of all the vectors associated with each bonds.
The directions of C-O bond vectors are opposite to each other, so they cancel each other.
Hence,
The vector sum or the result of bond polarities for
Therefore,
Only dispersion forces are present in
Dispersion forces is depends upon the molecular weight.
Boiling point depends upon the strength of inter molecular forces.
Hence,
(c)
Interpretation:
The substance with higher boiling point in the given pairs of substances should be determined.
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
- Boiling point is depending upon the strength of inter molecular forces.
Answer to Problem 7.37QP
Explanation of Solution
The Cl-Cl bond in the
Therefore,
Only dispersion forces are present in
In
There are four C-H presented in
The result of all the bond polarities are the sum of all the vectors associated with each bonds.
The directions of C-H bond vectors are opposite to each other, so they cancel each other.
Hence,
The vector sum or the result of bond polarities for
Since the
Dispersion forces is depends upon the molecular weight.
Boiling point is depending upon the strength of inter molecular forces.
Hence,
(d)
Interpretation:
The substance with higher boiling point in the given pairs of substances should be determined.
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
- Boiling point is depending upon the strength of inter molecular forces.
Answer to Problem 7.37QP
Explanation of Solution
The F-F bond in the
Therefore,
Only dispersion forces are present in
Therefore,
Ionic forces are present in
Since ionic forces stronger than dispersion forces, then
Boiling point depends upon the strength of inter molecular forces.
Hence,
(e)
Interpretation:
The substance with higher boiling point in the given pairs of substances should be determined.
Concept introduction:
- Polarity of a bond is due to the difference in electro-negativities of atoms presented in it. The polarities of bonds are represented by using vectors.
- If the result of all bond polarities or vector sum is non-zero in a molecule, then the molecule is called as polar molecule.
- If the result of all bond polarities or vector sum is zero in a molecule, then the molecule is called as nonpolar molecule.
- Intermolecular force is the set of repulsive and attractive forces between molecules that result from the polarity between neighboring molecules. There are four types of intermolecular forces.
- Dipole – Dipole interaction: This force takes place between polar compounds.
- Hydrogen bonding is a type of dipole-dipole interaction of molecules when the hydrogen is bonded to strong electronegative atom (F, O, N, etc) in the molecules.
- Dispersion force is a weak force and this force is present in all compounds force.
- Boiling point is depending upon the strength of inter molecular forces.
Answer to Problem 7.37QP
Explanation of Solution
In ammonia (
Three N-H bonds are presented and due to the difference in electronegativities of nitrogen and hydrogen, it has bond polarity. So
Polar molecules exhibit dipole-dipole interactions.
Since the hydrogen atom is bonded to nitrogen, then hydrogen bonding will be presented in between
In
Three P-H bonds are presented and due to the difference in electronegativities of phosphorus and hydrogen, it has bond polarity. So
Polar molecules exhibit dipole-dipole interactions.
Boiling point depends upon the strength of inter molecular forces.
Hence,
The molecules of higher boiling point in the given pairs of molecules are determined according to the polarities or molecular weights of molecules.
Want to see more full solutions like this?
Chapter 7 Solutions
CHEMISTRY:ATOMS FIRST-2 YEAR CONNECT
- Q8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor. одarrow_forwardQ9: Explain why compound I is protonated on O while compound II is protonated on N. NH2 DD I II NH2arrow_forwardComplete the following reaction by identifying the principle organic product of the reactionarrow_forward
- Denote the dipole for the indicated bonds in the following molecules. ✓ H3C CH3 B F-CCl3 Br-Cl H3C —Si(CH3)3 CH3 OH HO HO H HO OH vitamin Carrow_forward(a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward10:16 ☑ Vo)) Vo) 4G LTE 76% Complete the following reaction by identifying the principle organic product of the reaction. HO OH ↑ CH2N2 OH ? ○ A. 01 N₂H2C OH ОН B. HO OCH3 OH ○ C. HO OH ŎCH₂N2 ○ D. H3CO OH он Quiz navigation 1 2 3 4 5 11 12 Next page 10 6 7 8 9 10arrow_forward
- Which one of the following statements explain why protecting groups are referred to as “a necessary evil in organic synthesis”? Question 12Select one or more: A. They increase the length and cost of the synthesis B. Every synthesis employs protecting groups C. Protecting group have no role to play in a synthesis D. They minimize the formation of side productsarrow_forwardWhich of the following attributes is a key advantage of the chiral auxiliary approach over the chiral pool approach in asymmetric synthesis? Question 10Select one: A. Chiral auxiliaries are cheaper than chiral pool substrates B. Chiral auxiliary can be recovered and recycled unlike chiral pool substrates. C. The use of chiral auxiliaries provide enantiopure products, while chiral pool reactions are only enantioselective D. The chiral auxiliaries are naturally occurring and do not require synthesisarrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 CH3 H3C HO: CI:arrow_forward
- Which of the following are TRUE about linear syntheses? Question 7Select one: A. They are easier to execute B. They are the most efficient strategy for all syntheses C. They are generally shorter than convergent syntheses D. They are less versatile compared to convergent synthesesarrow_forwardWhich of the following characteristics is common among chiral pool substrates? Question 4Select one: A. They have good leaving groups B. They are all achiral C. All have a multiplicity of chiral centres D. They have poor leaving groupsarrow_forwardDetermine whether the following reaction is an example of a nucleophilic substitution reaction: H NO2 H+ NO 2 + Molecule A Molecule B Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. What word or two-word phrase is used to describe the role Molecule A plays in this reaction? What word or two-word phrase is used to describe the role Molecule B plays in this reaction? Use a 6 + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. O Yes ○ No ☐ 0 dx 000 HE ?arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning