Concept explainers
(a)
Interpretation:
The pressure in millimeter of mercury for a sample of carbon monoxide gas at given set of conditions by using combined
Concept Introduction:
Combined gas law tells that the Kelvin temperature of gas is directly proportional to the pressure and volume of a fixed amount of gas. The mathematical expression for combined gas law can be represented as follows,
(a)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Record the given data,
Now, substitute these values in rearranged combined gas law and do some simple mathematical calculation to gent final answer as follows,
The final pressure in millimeter of mercury for a sample of carbon monoxide gas at given set of conditions is
(b)
Interpretation:
The temperature in degree Celsius for a sample of carbon monoxide gas at given set of conditions by using combined gas law has to be determined.
Concept Introduction:
Combined gas law tells that the Kelvin temperature of gas is directly proportional to the pressure and volume of a fixed amount of gas. The mathematical expression for combined gas law can be represented as follows,
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Record the given data,
Now, substitute these values in rearranged combined gas law and do some simple mathematical calculation to gent final answer as follows,
The obtained pressure is in Kelvin units now we have to convert this value into degree Celsius as follows,
The final temperature in degree Celsius for a sample of carbon monoxide gas at given set of conditions is
(c)
Interpretation:
The volume in liters for a sample of carbon monoxide gas at given set of conditions by using combined gas law has to be determined.
Concept Introduction:
Combined gas law tells that the Kelvin temperature of gas is directly proportional to the pressure and volume of a fixed amount of gas. The mathematical expression for combined gas law can be represented as follows,
(c)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Record the given data,
Now, substitute these values in rearranged combined gas law and do some simple mathematical calculation to gent final answer as follows,
The final volume in liters for a sample of carbon monoxide gas at given set of conditions is
(d)
Interpretation:
The pressure in atmosphere for a sample of carbon monoxide gas at given set of conditions by using combined gas law has to be determined.
Concept Introduction:
Combined gas law tells that the Kelvin temperature of gas is directly proportional to the pressure and volume of a fixed amount of gas. The mathematical expression for combined gas law can be represented as follows,
(d)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Record the given data,
Now, substitute these values in rearranged combined gas law and do some simple mathematical calculation to gent final answer as follows,
The final pressure in atmosphere for a sample of carbon monoxide gas at given set of conditions is
Want to see more full solutions like this?
Chapter 7 Solutions
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
- we were assigned to dilute 900ppm in to 18ppm by using only 250ml vol flask. firstly we did calc and convert 900ppm to 0.9 ppm to dilute in 1 liter. to begin the experiment we took 0,225g of kmno4 and dissolved in to 250 vol flask. then further we took 10 ml sample sol and dissolved in to 100 ml vol flask and put it in to a spectrometer and got value of 0.145A . upon further calc we got v2 as 50ml . need to find DF, % error (expval and accptVal), molarity, molality. please write the whole report. thank you The format, tables, introduction, procedure and observation, result, calculations, discussion and conclusionarrow_forwardQ5. Predict the organic product(s) for the following transformations. If no reaction will take place (or the reaction is not synthetically useful), write "N.R.". Determine what type of transition state is present for each reaction (think Hammond Postulate). I Br₂ CH3 F2, light CH3 Heat CH3 F₂ Heat Br2, light 12, light CH3 Cl2, light Noarrow_forwardNonearrow_forward
- In the phase diagram of steel (two components Fe and C), region A is the gamma austenite solid and region B contains the gamma solid and liquid. Indicate the degrees of freedom that the fields A and B have,arrow_forwardFor a condensed binary system in equilibrium at constant pressure, indicate the maximum number of phases that can exist.arrow_forwardPart V. Label ad match the carbons in compounds Jane and Diane w/ the corresponding peak no. in the Spectra (Note: use the given peak no. To label the carbons, other peak no are intentionally omitted) 7 4 2 -0.13 -0.12 -0.11 -0.10 -0.08 8 CI Jane 1 -0.09 5 210 200 190 180 170 160 150 140 130 120 110 100 -8 90 f1 (ppm) 11 8 172.4 172.0 f1 (ppr HO CI NH Diane 7 3 11 80 80 -80 -R 70 60 60 2 5 -8 50 40 8. 170 160 150 140 130 120 110 100 90 -0 80 70 20 f1 (ppm) 15 30 -20 20 -60 60 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 -0.00 -0.01 10 -0.17 16 15 56 16 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 17.8 17.6 17.4 17.2 17.0 f1 (ppm) -0.03 -0.02 550 106 40 30 20 20 -0.01 -0.00 F-0.01 10 0arrow_forward
- n Feb 3 A T + 4. (2 pts) Draw the structure of the major component of the Limonene isolated. Explain how you confirmed the structure. 5. (2 pts) Draw the fragment corresponding to the base peak in the Mass spectrum of Limonene. 6. (1 pts) Predict the 1H NMR spectral data of R-Limonene. Proton NMR: 5.3 pon multiplet (H Ringarrow_forwardPart VI. Ca H 10 O is the molecular formula of compound Tom and gives the in the table below. Give a possible structure for compound Tom. 13C Signals summarized C1 C2 C3 C4 C5 C6 C7 13C shift (ppm) 23.5 27.0 33.0 35.8 127 162 205 DEPT-90 + DEPT-135 + +arrow_forward2. Using the following data to calculate the value of AvapH o of water at 298K. AvapH o of water at 373K is 40.7 kJ/mol; molar heat capacity of liquid water at constant pressure is 75.2J mol-1 K-1 and molar heat capacity of water vapor at constant pressure is 33.6 J mol-1 K-1.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199023/9781285199023_smallCoverImage.gif)