FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Steady-state operating data are shown in the figure below for an open feedwater heater. Heat transfer from
the feedwater heater to its surroundings occurs at an average outer surface temperature of 50°C at a rate of
100 kW. Ignore the effects of motion and gravity and let To = 25°C, po = 1 bar. Determine
(a) the ratio of the incoming mass flow rates, m/ṁ2.
(b) the rate of exergy destruction, in kW.
P2 = 1 bar
Tz = 400°C
1
ṁy = 0.7 kg/s
Pi = 1 bar
T, = 40°C
Feedwater heater
X3 = 25%
P3 = 1 bar
Tp = 50°C
%3D
2)
A system executes a power cycle while receiving 900 Btu by heat transfer at a temperature of 900°R and discharging 800 Btu by heat
transfer at a temperature of 540°R. There are no other heat transfers.
Determine the cycle thermal efficiency. Use the Clausius Inequality to determine Ocycle, in Btu/°R. Determine if this cycle is internally
reversible, irreversible, or impossible.
Step 1
Determine the cycle thermal efficiency.
n =
i
%
A system executes a power cycle while receiving 1000 Btu by heat transfer at a temperature of 900°R and discharging 700 Btu by heat transfer at a temperature of 540°R. There are no other heat transfers. Determine the cycle thermal efficiency. Use the Clausius Inequality to determine σ cycle in Btu/°R. Determine if this cycle is internally reversible, irreversible, or impossible.
Knowledge Booster
Similar questions
- An electrically-driven pump operating at steady state draws water from a pond at a pressure of 1 bar and a rate of 40 kg/s and delivers the water at a pressure of 4 bar. There is no significant heat transfer with the surroundings, and changes in kinetic and potential energy can be neglected. The isentropic pump efficiency is 80%. Evaluating electricity at 8 cents/kWh estimate the hourly cost of running the pump.arrow_forwardA system executes a power cycle while receiving 1000 Btu by heat transfer at a temperature of 900oR and discharging 600 Btu by heat transfer at a temperature of 540oR. There are no other heat transfers.Determine the cycle thermal efficiency. Use the Clausius Inequality to determine σcycle, in Btu/oR. Determine if this cycle is internally reversible, irreversible, or impossible.arrow_forwardA heat pump cycle is used to maintain the interior of a building at 25°C. At steady state, the heat pump receives energy by heat transfer from well water at 9°C and discharges energy by heat transfer to the building at a rate of 120,000 kJ/h. Over a period of 14 days, an electric meter records that 1500 kW · h of electricity is provided to the heat pump.Determine:(a) the amount of energy that the heat pump receives over the 14-day period from the well water by heat transfer, in kJ.(b) the heat pump’s coefficient of performance.(c) the coefficient of performance of a reversible heat pump cycle operating between hot and cold reservoirs at 25°C and 9°C.arrow_forward
- I need some help in how to solve this problem. Any help will be appreciated. Thanksarrow_forwardA system executes a power cycle while receiving 1000 Btu by heat transfer at a temperature of 900oR and discharging 600 Btu by heat transfer at a temperature of 540oR. There are no other heat transfers.Determine the cycle thermal efficiency. Use the Clausius Inequality to determine σcycle, in Btu/oR. Determine if this cycle is internally reversible, irreversible, or impossible.arrow_forwardA reversible heat pump cycle operates at steady state between hot and cold reservoirs at TH = 30°C and Tc 10°C, respectively. The rate of heat transfer at the high temperature is 10 kW. a. Determine the net power input, in kW. b. Determine the heat transfer rate from the cold reservoir at Tc, in kW. c. Determine the coefficient of performance of the cycle.arrow_forward
- A heat pump is used to maintain the interior of a building at 21 °C. At steady state, the heat pump receives energy by heat transfer from well water at 9°C and discharges energy by heat transfer to the building at a rate of 120000 kJ/h. Over a period of 14 days, an electric meter records that 1490 kW-h of electricity is provided to the heat pump. Determine: (a) The amount of energy that the heat pump receives over the 14-day period from the well water by heat transfer, in kJ (b) The heat pump's coefficient of performance. (c) The coefficient of performance of a reversible heat pump cycle operating between hot and cold reservoirs at 21 °C and 9 °Carrow_forwardA system executes a power cycle while receiving 1000 Btu by heat transfer at a temperature of 900°R and discharging 500 Btu by heat transfer at a temperature of 540°R. There are no other heat transfers. Determine the cycle thermal efficiency. Use the Clausius Inequality to determine oycle, in Btu/°R. Determine if this cycle is internally reversible, irreversible, or impossible.arrow_forwardTwo reversible power cycles are arranged in series. The first cycle receives energy by heat transfer from a reservoir at temperature TH and rejects energy to a reservoir at an intermediate temperature T. The second cycle receives the energy rejected by the first cycle from the reservoir at temperature T and rejects energy to a reservoir at temperature TC lower than T. Derive an expression for the intermediate temperature T in terms of TH and TC when,a. The net works of the two power cycles are equalb. The thermal efficiencies of the two power cycles are equalarrow_forward
- Thank youarrow_forwardThree sub steps of a thermodynamic cycle are employed in order to change the state of a gas from 1 bar, 1.5 cubic meter and internal energy of 512 kJ. The processes are: 1st step: Compression at constant PV to a pressure of 2 bar and internal energy of 690 kJ. 2nd step: A process where work transferred is zero and heat transferred is - 150 kJ. 3rd step: A process where work transferred is -50 kJ. without KE and PE changes, determine: a. heat transferred during 1st step (kJ) b. heat transferred during 3rd step (kJ)arrow_forwardThe refrigerator shown in the figure below operates at steady state with a coefficient of performance (COP) of 5.0 within a kitchen at 23 °C. The refrigerator rejects 4.8 kW by heat transfer to its surroundings from metal coils located on its exterior. Determine: (a) the power input, in kW.(b) the lowest theoretical temperature inside the refrigerator, in K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY