FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
A heat pump and a pipe through which water flows at a flow rate of 0.05kg/s are in interaction. At the inlet of the pipe, the water is in a saturated liquid state at 2 bar pressure. After the water in the pipe interacts with the heat engine, the water is in the form of a saturated gas at 2 bar pressure at the outlet of the pipe. The heat pump can only obtain energy from a reservoir at 16 ℃. Engineers have calculated that 25kW of power must be transferred to the heat engine for this process to take place. Explain whether the engineers were right.
Two pounds of carbon dioxide (CO₂) as an ideal gas executes a Camot power cycle while operating between thermal
reservoirs at 480 and 100°F. The pressures at the initial and final states of the isothermal expansion are 400 and 200 lb/in²,
respectively. The specific heat ratio is k-1.24.
Determine the thermal efficiency, the work for the isothermal expansion, in Btu, and the work for the adiabatic expansion, in
Btu.
Step 1
Determine the thermal efficiency.
7 =
i
Save for Later
%
Two pounds of carbon dioxide (CO₂) as an ideal gas executes a Carnot power cycle while operating between thermal reservoirs at 470
and 100°F. The pressures at the initial and final states of the isothermal expansion are 400 and 200 lb/in², respectively. The specific
heat ratio is k-1.24.
Determine the thermal efficiency, the work for the isothermal expansion, in Btu, and the work for the adiabatic expansion, in Btu.
Step 1
Your answer is correct.
Determine the thermal efficiency.
7= 39.798
Hint
Step 2
%
* Your answer is incorrect.
Determine the work during the isothermal expansion, in Btu.
W23 29.971
Btu
Attempts: 2 of 4 used
Knowledge Booster
Similar questions
- In a steam engine the pressure and volume of steam satisfy the equation PV1.4 = k, where k is a constant. (This is true for adiabatic expansion, that is, expansion in which there is no heat transfer between the cylinder and its surroundings.) Calculate the work done by the engine during a cycle when the steam starts at a pressure of 180 lb/in2 and a volume of 300 in3 and expands to a volume of 1000 in3.arrow_forwardThe following processes occur in a reversible thermodynamic cycle: 1-2: 0.2 kg heating at constant pressure 1.05 bar at specific volume 0.1 m3/kg and work done -515 J. 2-3: Isothermal compression to 4.2 bar. 3-4: Expansion according to law pv1.7= constant. 4-1: heating at constant volume back to the initial conditions. Calculate the work done for the isothermal process in J.arrow_forward1. The heat produced in a boiler is transferred from the combustion products to the water. While the temperature of the combustion products decreases from 1100 °C to 550 °C, the pressure remains constant at 0.1 MPa. The average specific heat at constant pressure of the combustion products is 1.09 kJ/kg.K. The water enters the system at 0.8 MPa and 150 °C, and leaves at 0.8 MPa and 250 °C. Determine the second law efficiency and the irreversibility for each kilogram of water vaporized for this process. Note: This is a thermodynamics course question. Please provide a solution that is clear and quick.arrow_forward
- The following processes occur in a reversible thermodynamic cycle: 1-2: 0.2 kg heating at constant pressure 1.05 bar at specific volume 0.1 m3/kg and work done -515 J. 2-3: Isothermal compression to 4.2 bar. 3-4: Expansion according to law pv1.7= constant. 4-1: heating at constant volume back to the initial conditions. Calculate the net work done in joules?arrow_forwardThe following processes occur in a reversible thermodynamic cycle: 1-2: 0.2 kg heating at constant pressure 1.05 bar at specific volume 0.1 m3/kg and work done -515 J. 2-3: Isothermal compression to 4.2 bar. 3-4: Expansion according to law pv1.7= constant. 4-1: heating at constant volume back to the initial conditions. Calculate the specific work done for process 1-2 in J/kg.arrow_forwardA turbine provides 5 MW of power. Determine the rate of heat transfer between the turbine and its surroundings if the operational conditions are as follows: The turbine operates at steady state. Water enters the turbine at 2 MPa and 360 C with a velocity of 100 m/s. Saturated vapor exits at 0.1 MPa and a velocity of 50 m/s. The elevation of the inlet is 3 m higher than at the exit. The mass flow rate of water is 15 kg/s. Let g= 9.81 m/s^2. Select one: a. -2315.2 kW b. - 812.2 W c. 1112.1 MW d. - 331.4 MWarrow_forward
- The following processes occur in a reversible thermodynamic cycle: 1-2: 0.2 kg heating at constant pressure 1.05 bar at specific volume 0.1 m3/kg and work done -515 J. 2-3: Isothermal compression to 4.2 bar. 3-4: Expansion according to law pv1.7= constant. 4-1: heating at constant volume back to the initial conditions. Calculate the work done for the constant volume heating process?arrow_forwardA heat machine and a pipe through which water flows at a flow rate of 0.05kg/s are in interaction. At the inlet of the pipe, the water is in a saturated liquid state at 2 bar pressure. After the water in the pipe interacts with the heat engine, the water is in the form of a saturated gas at 2 bar pressure at the outlet of the pipe. The heat engine can only generate energy from a reservoir at 16 ℃. Engineers have calculated that 25kW of power must be transferred to the heat engine for this process to take place. Explain whether the engineers were right.arrow_forwardDuring a reversible process executed by a nonflow system, the pressure increases from 400 kPaa to 1400 kPaa in accordance with pV? = C, and the internal energy increases 25 Btu; the initial volume is 3.176 ft. Determine the heat transfer, in kJ and Btu. %3Darrow_forward
- The following processes occur in a reversible thermodynamic cycle: 1-2: 0.2 kg heating at constant pressure 1.05 bar at specific volume 0.1 m³/kg and work done -515 J. 2-3: Isothermal compression to 4.2 bar. 3-4: Expansion according to law pv1./= constant. 4-1: heating at constant volume back to the initial conditions. Calculate the work done for the expansion process in joules to 2 decimal places ?arrow_forwardA system executes a power cycle while receiving 1000 Btu by heat transfer at a temperature of 900oR and discharging 600 Btu by heat transfer at a temperature of 540oR. There are no other heat transfers.Determine the cycle thermal efficiency. Use the Clausius Inequality to determine σcycle, in Btu/oR. Determine if this cycle is internally reversible, irreversible, or impossible.arrow_forwardA gas with specific volume v₁ = 1 m³/Kg and pressure p₁=1bar in a closed system undergoes a thermodynamic cycle which consists of the following three separate processes: 1->2: Isobaric compression to v₂-0.25 m³/Kg 2->3: Isometric heating. 3->1: Isothermal expansion (pV = constant) to the initial volume. Calculate the specific work produced by the gas per cycle. Present your answer in kJ/kg.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY