The conversion of the kinetic energy of wind to electricity may be an attractive alternative to the use of fossil fuels. Typically, wind causes the rotor of a turbine to turn, and a generator converts the rotational kinetic energy of the rotor into electricity. Power generated by a wind turbine
The conversion ef?ciency
(a) Develop an equation for the density of air (kg/m3) as a function of the temperature (K) and relative humidity of the air. Use the Antoine equation for the vapor pressure of water, and assume atmospheric pressure equals 1.0 atm.
(b) A wind turbine with a 30.0-ft diameter and 35.0% conversion efficiency generates electricity on a day when the temperature is 75°F, the relative humidity is 78.0%, and the average wind velocity is 9.50 miles/h. Calculate the generated power in kW.
(c) Seasonal variations can cause signi?cant changes in the power obtained from a wind turbine. Your task is to calculate and analyze these variations over a year for three cities in the United States using historical averages recorded by the National Oceanic and Atmospheric Administration (NOAA). The table below and on the next page gives monthly average relative humidities, mean temperatures, and wind speeds at three different cities, one each from the south, northeast, and western regions of the country. Reproduce the table on a spreadsheet, assume a wind turbine diameter of 30.0 feet and conversion efficiency of 35.0%, and estimate the power generated (kW) for each city and month. (The calculated value for one month is given so you can check your calculations.)
Diameter (ft) | 30.0 | |||||||||||||
Ef?ciency | 35.0% | |||||||||||||
City (Pop) | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | Yr. Mean | |
Huntsville AL (179653) | hr(%) | 80 | 79 | 78 | 81 | 85 | 87 | 89 | 89 | 88 | 86 | 82 | 81 | |
T(°F) | 39.8 | 44.3 | 52.3 | 60.4 | 68.6 | 76 | 79.5 | 78.6 | 72.4 | 61.3 | 51.2 | 43.1 | ||
u(mph) | 9 | 9.4 | 9.8 | 9.2 | 7.9 | 6.9 | 6 | 5.8 | 6.7 | 7.3 | 8.1 | 9 | ||
T(K) | ||||||||||||||
|
||||||||||||||
u(m/s) | ||||||||||||||
|
1.004 | |||||||||||||
Bridgeport, CT (137912) | hr(%) | 69 | 69 | 69 | 68 | 74 | 77 | 77 | 78 | 80 | 78 | 76 | 73 | |
T(°F) | 29.9 | 31.9 | 39.5 | 48.9 | 59 | 68 | 74 | 73.1 | 65.7 | 54.7 | 45.1 | 35.1 | ||
u(mph) | 12.5 | 12.9 | 13 | 12.4 | 11.1 | 9.9 | 9.4 | 9.5 | 10.5 | 11.3 | 12 | 12.1 | ||
T(K) | ||||||||||||||
|
||||||||||||||
u(m/s) | ||||||||||||||
|
||||||||||||||
Sacramento, CA (1394154) | hr(%) | 90 | 88 | 85 | 82 | 82 | 78 | 77 | 78 | 77 | 79 | 87 | 88 | |
T(°F) | 51.2 | 54.5 | 58.9 | 65.5 | 71.5 | 75.4 | 74.8 | 71.7 | 64.4 | 53.3 | 45.8 | 51.2 | ||
u(mph) | 7.3 | 8.4 | 8.6 | 9 | 9.6 | 8.9 | 8.4 | 7.4 | 6.4 | 6 | 6.4 | 7.3 | ||
T(K) | ||||||||||||||
|
||||||||||||||
u(m/s) | ||||||||||||||
|
||||||||||||||
(d) Plot the power variation over the course of a year for all three cities. How do the cities compare as locations for wind turbines‘?
(e) The averageelectricity consumption in the United States is approximately 12,000 kWh per capita per year. On a wind—turbine farm, a single turbine occupies a space of 1000 m2. Estimate the number of turbines that would be required to meet the electricity needs of each of the three cities listed in the table if the turbines were operated continuously. Then estimate how many acres and hectares each farm would occupy.
(f) The numbers of turbines actually put in place to meet the power requirements of the three cities would all be greater than the numbers calculated in Part (e). List three reasons for the calculated quantities to be underestimates.
Learn your wayIncludes step-by-step video
Chapter 7 Solutions
ELEM PRIN OF CHEMICAL PROC(LL)+NEXTGEN
Additional Engineering Textbook Solutions
Database Concepts (8th Edition)
Modern Database Management
Electric Circuits. (11th Edition)
Starting Out with C++: Early Objects (9th Edition)
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Java: An Introduction to Problem Solving and Programming (8th Edition)
- 2. Design a spherical tank, with a wall thickness of 2.5 cm that will ensure that no more than 45 kg of hydrogen will be lost per year. The tank, which will operate at 500 °C, can be made from nickel, aluminum, copper, or iron (BCC). The diffusion coefficient of hydrogen and the cost per pound for each available material is listed in Table 1. Material Do (m2/s) Q (J/mol) Cost ($/kg) Nickel 5.5 x 10-7 37.2 16.09 Aluminium 1.6 x 10-5 43.2 2.66 Copper 1.1 x 10-6 39.3 9.48 Iron (BCC) 1.2 × 10-7 15.1 0.45 Table 1: Diffusion data for hydrogen at 500 °C and the cost of material.arrow_forwardA flash drum at 1.0 atm is separating a feed consisting of methanol and water. If the feed rate is 2000 kg/h and the feed is 45 wt % methanol, what are the values of L (kg/h), V (kg/h), yM, xM (weight fractions), and Tdrum if 35% by weight of the feed is vaporized? VLE data are in Table 2-8.arrow_forwardQ1.B. Make a comparison between current control PWM rectifier in the abc reference frame and dq reference frame.arrow_forward
- step by steparrow_forwardThe power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forwardstep by step pleasearrow_forward
- step by step pleasearrow_forwardstep by steparrow_forwardThe power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forward
- The power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:arrow_forwardO Consider a 0.8 m high and 0.5 m wide window with thickness of 8 mm and thermal conductivity of k = 0.78 W/m °C. For dry day, the temperature of outdoor is -10 °C and the inner room temperature is 20°C. Take the heat transfer coefficient on the inner and outer surface of the window to be h₁ = 10 W/m² °C and h₂ = 40 W/m² °C which includes the effects of insulation. Determine:arrow_forwardCalculate the mass flow rate of the steam. Determine Cp and C₁ of steam.arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The