A bottle initially contains m large pills and n small pills. Each day, a patient randomly chooses one of the pills. If a small pill is chosen, then that pill is eaten. If a large pill is chosen, then the pill is broken in two; one part is returned to the bottle (and is now considered a small pill) and the other part is then eaten. a. Let X denote the number of small pills in the bottle after the last large pill has been chosen and its smaller half returned. Find E[X]. Hint: Define n + m , indicator variables, one for each of the small pills initially present and one for each of the m, small pills created when a large one is split in two. Now use the argument of Example 2m. b. Let Y denote the day on which the last large pill is chosen. Find E[Y]. Hint: What is the relationship between X and Y?
A bottle initially contains m large pills and n small pills. Each day, a patient randomly chooses one of the pills. If a small pill is chosen, then that pill is eaten. If a large pill is chosen, then the pill is broken in two; one part is returned to the bottle (and is now considered a small pill) and the other part is then eaten. a. Let X denote the number of small pills in the bottle after the last large pill has been chosen and its smaller half returned. Find E[X]. Hint: Define n + m , indicator variables, one for each of the small pills initially present and one for each of the m, small pills created when a large one is split in two. Now use the argument of Example 2m. b. Let Y denote the day on which the last large pill is chosen. Find E[Y]. Hint: What is the relationship between X and Y?
Solution Summary: The author explains how to find the value of mathrmEleft, which denotes the number of small pills in the bottle.
A bottle initially contains m large pills and n small pills. Each day, a patient randomly chooses one of the pills. If a small pill is chosen, then that pill is eaten. If a large pill is chosen, then the pill is broken in two; one part is returned to the bottle (and is now considered a small pill) and the other part is then eaten.
a. Let X denote the number of small pills in the bottle after the last large pill has been chosen and its smaller half returned. Find E[X].
Hint: Define
n
+
m
, indicator variables, one for each of the small pills initially present and one for each of the m, small pills created when a large one is split in two. Now use the argument of Example 2m.
b. Let Y denote the day on which the last large pill is chosen. Find E[Y].
Q1. A group of five applicants for a pair of identical jobs consists of three men and two
women. The employer is to select two of the five applicants for the jobs. Let S
denote the set of all possible outcomes for the employer's selection. Let A denote
the subset of outcomes corresponding to the selection of two men and B the subset
corresponding to the selection of at least one woman. List the outcomes in A, B,
AUB, AN B, and An B. (Denote the different men and women by M₁, M2, M3
and W₁, W2, respectively.)
Q3 (8 points)
Q3. A survey classified a large number of adults according to whether they were diag-
nosed as needing eyeglasses to correct their reading vision and whether they use
eyeglasses when reading. The proportions falling into the four resulting categories
are given in the following table:
Use Eyeglasses for Reading
Needs glasses Yes
No
Yes
0.44
0.14
No
0.02
0.40
If a single adult is selected from the large group, find the probabilities of the events
defined below. The adult
(a) needs glasses.
(b) needs glasses but does not use them.
(c) uses glasses whether the glasses are needed or not.
4. (i) Let a discrete sample space be given by
N = {W1, W2, W3, W4},
and let a probability measure P on be given by
P(w1) = 0.2, P(w2) = 0.2, P(w3) = 0.5, P(wa) = 0.1.
Consider the random variables X1, X2 → R defined by
X₁(w1) = 1, X₁(w2) = 2,
X2(w1) = 2, X2 (w2) = 2,
Find the joint distribution of X1, X2.
(ii)
X1(W3) = 1, X₁(w4) = 1,
X2(W3) = 1, X2(w4) = 2.
[4 Marks]
Let Y, Z be random variables on a probability space (, F, P).
Let the random vector (Y, Z) take on values in the set [0, 1] x [0,2] and let the
joint distribution of Y, Z on [0, 1] x [0,2] be given by
1
dPy,z (y, z) ==(y²z+yz2) dy dz.
harks 12 Find the distribution Py of the random variable Y.
[8 Marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License