a. For each situation, find Z(critical).
Alpha (
|
Form of the Test | Z(critical) |
0.05 | One-tailed | |
0.10 | Two-tailed | |
0.06 | Two-tailed | |
0.01 | One-tailed | |
0.02 | Two-tailed |
b. For each situation, find the critical t score.
Alpha (
|
Form of the Test | N | t(critical) |
0.10 | Two-tailed | 31 | |
0.02 | Two-tailed | 24 | |
0.01 | Two-tailed | 121 | |
0.01 | One-tailed | 31 | |
0.05 | One-tailed | 61 |
c. Compute the appropriate test statistic (Z or t) for each situations.
Population | Sample | Z(obtained) or t(obtained) | |
1. |
|
|
|
2. |
|
|
|
3. |
|
|
|
4. |
|
|
|
5. |
|
|
a)
To find:
The Z(critical) value for the given situation.
Answer to Problem 7.1P
Solution:
The Z(critical) values are given in Table
Alpha ( |
Form of the Test | Z(critical) |
0.05 | One-tailed |
|
0.10 | Two-tailed |
|
0.06 | Two-tailed |
|
0.01 | One-tailed |
|
0.02 | Two-tailed |
Explanation of Solution
Given:
The given table of alpha values is,
Alpha ( |
Form of the Test | Z(critical) |
0.05 | One-tailed | |
0.10 | Two-tailed | |
0.06 | Two-tailed | |
0.01 | One-tailed | |
0.02 | Two-tailed |
Description:
The critical region of a sampling distribution is the area that includes the unlikely sample outcomes.
The critical Z values are the areas under the standard normal curve.
For one-tailed critical values, the area is only on one side and the whole value of
For two-tailed critical values, the area is equally divided on both the sides and the value of
Calculation:
The given table of alpha values is,
Alpha ( |
Form of the Test | Z(critical) |
0.05 | One-tailed | |
0.10 | Two-tailed | |
0.06 | Two-tailed | |
0.01 | One-tailed | |
0.02 | Two-tailed |
Table
The Z(critical) are obtained from the critical value table for standard normal variates.
For
Or,
Thus, for
For
And,
Thus, for
For
And,
Thus, for
For
Or,
Thus, for
For
And,
Thus, for
The obtained critical values are tabulated as,
Alpha ( |
Form of the Test | Z(critical) |
0.05 | One-tailed |
|
0.10 | Two-tailed |
|
0.06 | Two-tailed |
|
0.01 | One-tailed |
|
0.02 | Two-tailed |
Table
Conclusion:
The Z(critical) values are given in Table
Alpha ( |
Form of the Test | Z(critical) |
0.05 | One-tailed |
|
0.10 | Two-tailed |
|
0.06 | Two-tailed |
|
0.01 | One-tailed |
|
0.02 | Two-tailed |
b)
To find:
The t(critical) value for the given situation.
Answer to Problem 7.1P
Solution:
The t(critical) values are given in Table
Alpha ( |
Form of the Test | N | t(critical) |
0.10 | Two-tailed |
31 | |
0.02 | Two-tailed |
24 | |
0.01 | Two-tailed |
121 | |
0.01 | One-tailed |
31 | |
0.05 | One-tailed |
61 |
Explanation of Solution
Given:
The given table of alpha values is,
Alpha ( |
Form of the Test | N | t(critical) |
0.10 | Two-tailed | 31 | |
0.02 | Two-tailed | 24 | |
0.01 | Two-tailed | 121 | |
0.01 | One-tailed | 31 | |
0.05 | One-tailed | 61 |
Description:
The critical region of a sampling distribution is the area that includes the unlikely sample outcomes.
The critical t values are the areas under the curve of t-distribution.
For one-tailed critical values, the area is only on one side and the whole value of
For two-tailed critical values, the area is equally divided on both the sides and the value of
Calculation:
The given table of alpha values is,
Alpha ( |
Form of the Test | N | t(critical) |
0.10 | Two-tailed | 31 | |
0.02 | Two-tailed | 24 | |
0.01 | Two-tailed | 121 | |
0.01 | One-tailed | 31 | |
0.05 | One-tailed | 61 |
Table
The t(critical) values are obtained from the t-distribution table with the given value of
For
And,
Thus, for
For
And,
Thus, for
For
And,
Thus, for
For
Or,
Thus, for
For
Or,
Thus, for
The obtained critical values are tabulated as,
Alpha ( |
Form of the Test | N | t(critical) |
0.10 | Two-tailed |
31 | |
0.02 | Two-tailed |
24 | |
0.01 | Two-tailed |
121 | |
0.01 | One-tailed |
31 | |
0.05 | One-tailed |
61 |
Table
Conclusion:
The t(critical) values are given in Table
Alpha ( |
Form of the Test | N | t(critical) |
0.10 | Two-tailed |
31 | |
0.02 | Two-tailed |
24 | |
0.01 | Two-tailed |
121 | |
0.01 | One-tailed |
31 | |
0.05 | One-tailed |
61 |
c)
To find:
The appropriate test statistics for the given situation.
Answer to Problem 7.1P
Solution:
The Z(critical) and t(critical) values are given in Table
Population | Sample | Z(obtained) or t(obtained) | |
1. | |||
2. | |||
3. | |||
4. | 0.66 | ||
5. | 0.77 |
Explanation of Solution
Given:
The given table of information is,
Population | Sample | Z(obtained) or t(obtained) | |
1. | |||
2. | |||
3. | |||
4. | |||
5. |
Formula used:
For large samples with single mean and given standard deviation, the Z value is given by,
Where,
N is the sample size.
For small samples with single sample mean and unknown standard deviation, the t value is given by,
Where,
N is the sample size.
For large samples with single sample proportions, the Z value is given by,
Where,
N is the sample size.
Calculation:
The given table of alpha values is,
Population | Sample | Z(obtained) or t(obtained) | |
1. | |||
2. | |||
3. | |||
4. | |||
5. |
Table
For large samples with single mean and given standard deviation, the Z value is given by,
For sample mean
Substitute 2.20 for
Thus, the obtained Z value is
For small samples with single sample mean and unknown standard deviation, the t value is given by,
For sample mean
Substitute 16.8 for
Thus, the obtained t value is
For sample mean
Substitute 9.4 for
Thus, the obtained t value is
For large samples with single sample proportions, the Z value is given by,
For sample proportion
Substitute 0.60 for
Thus, the obtained Z value is
For sample proportion
Substitute 0.30 for
Thus, the obtained Z value is
The obtained critical values are tabulated as,
Population | Sample | Z(obtained) or t(obtained) | |
1. | |||
2. | |||
3. | |||
4. | 0.66 | ||
5. | 0.77 |
Table
Conclusion:
The Z(critical) and t(critical) values are given in Table
Population | Sample | Z(obtained) or t(obtained) | |
1. | |||
2. | |||
3. | |||
4. | 0.66 | ||
5. | 0.77 |
Want to see more full solutions like this?
Chapter 7 Solutions
The Essentials of Statistics: A Tool for Social Research
Additional Math Textbook Solutions
Introductory Statistics
Intermediate Algebra (13th Edition)
Precalculus
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Basic College Mathematics
- Determine if the two statements are equalivalent using a truth tablearrow_forwardQuestion 3: p and q represent the following simple statements. p: Calgary is the capital of Alberta. A) Determine the value of each simple statement p and q. B) Then, without truth table, determine the va q: Alberta is a province of Canada. for each following compound statement below. pvq р^~q ~рл~q ~q→ p ~P~q Pq b~ (d~ ← b~) d~ (b~ v d) 0 4arrow_forward2. Let X be a random variable. (a) Show that, if E X2 = 1 and E X4arrow_forward1. Show that, for any non-negative random variable X, EX+E+≥2, X E max X. 21.arrow_forwarda small pond contains eight catfish and six bluegill. If seven fish are caught at random, what is the probability that exactly five catfish have been caught?arrow_forward23 The line graph in the following figure shows Revenue ($ millions) one company's revenues over time. Explain why this graph is misleading and what you can do to fix the problem. 700 60- 50- 40 30 Line Graph of Revenue 20- 101 1950 1970 1975 1980 1985 Year 1990 2000arrow_forwardd of the 20 respectively. Interpret the shape, center and spread of the following box plot. 14 13 12 11 10 6 T 89 7 9 5. 治arrow_forwardF Make a box plot from the five-number summary: 100, 105, 120, 135, 140. harrow_forward14 Is the standard deviation affected by skewed data? If so, how? foldarrow_forwardFrequency 15 Suppose that your friend believes his gambling partner plays with a loaded die (not fair). He shows you a graph of the outcomes of the games played with this die (see the following figure). Based on this graph, do you agree with this person? Why or why not? 65 Single Die Outcomes: Graph 1 60 55 50 45 40 1 2 3 4 Outcome 55 6arrow_forwardlie y H 16 The first month's telephone bills for new customers of a certain phone company are shown in the following figure. The histogram showing the bills is misleading, however. Explain why, and suggest a solution. Frequency 140 120 100 80 60 40 20 0 0 20 40 60 80 Telephone Bill ($) 100 120arrow_forward25 ptical rule applies because t Does the empirical rule apply to the data set shown in the following figure? Explain. 2 6 5 Frequency 3 сл 2 1 0 2 4 6 8 00arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL