
Concept explainers
Define the different reference meridians that can be used for the direction ofa line.

Define the different reference meridians that can be used
Answer to Problem 7.1P
True or Geodetic meridian
Magnetic meridian
Astronomic meridian
Grid meridian
Assumed meridian
Explanation of Solution
Given information:
Different reference meridians
Meridian is a reference with respect to which the bearing of a line is measured to represent the direction of the line.
True or Geodetic meridian:
True meridian is the imaginary line passing through the true North pole and true South pole at the point of the observer. True meridian is constant and does not change with time.
Magnetic meridian:
Magnetic meridian is the imaginary line passing through the magnetic North pole and magnetic South pole due to the magnetic. Magnetic meridian is not constant and it may change with time.
Astronomic meridian:
Astronomic meridian is the bigger circle passing through the North celestial poles and South celestial poles, the zenith and the nadir of the observer.
Grid meridian:
Grid meridian is formed when new lines are drawn parallel to the geodetic meridian in which zone we are preparing the local map.
Assumed meridian:
Assumed meridian is a meridian when the direction is assumed to the constant position of the zone.
Conclusion:
The meridians are very useful in determining the bearings of the line.
Want to see more full solutions like this?
Chapter 7 Solutions
ELEMENTARY SURVEYING (LOOSELEAF)
Additional Engineering Textbook Solutions
Starting Out with C++ from Control Structures to Objects (9th Edition)
Modern Database Management
Web Development and Design Foundations with HTML5 (8th Edition)
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Degarmo's Materials And Processes In Manufacturing
Management Information Systems: Managing The Digital Firm (16th Edition)
- Determine the minimum of the appropriate yellow interval (Y . approach speed limit: 45 mi/h approach grade: 3.2% downgrade assumed perception-reaction time: 1.0 sec assumed deceleration rate: 11.2 ft/sec² assumed average vehicle length: 20 ft width of intersection to be crossed: 56 ft min' in s) for a signal phase under the following conditions.arrow_forwardCompute the nominal shear strength of an M10 × 7.5 of A572 Grade 60 steel (Fy = 60 ksi). For M10 × 7.5: d = 9.99 in., tw = 0.13 in., h/tw Vn = x kips = 71.arrow_forwardA flexural member is fabricated from two flange plates 1/2 × 71/2 and a web plate 3/8 × 20. The yield stress of the steel is 50 ksi. a. Compute the plastic section modulus Z and the plastic moment Mp with respect to the major principal axis. (Express your answers to three significant figures.) Z = Mp = in. 3 ft-kips b. Compute the elastic section modulus S and the yield moment My with respect to the major principal axis. (Express your answers to three significant figures.) S = My = in.3 ft-kipsarrow_forward
- The beam shown in the figure below has lateral support at the ends only. The concentrated loads are live loads. Use A992 steel and select a shape. Do not check deflections. Use C = 1.0 (this is conservative). Suppose that PL = 20 k. PL PL Use the table below. Shape Mn Mn Vn Vn Ω Ων W12 × 58 216 144 132 87.8 W12 × 65 269 179 142 94.4 W12 × 72 308 205 159 106 W14 × 61 235 157 156 104 W14 × 68 280 187 174 116 W14 × 74 318 212 192 128 W16 × 67 276 184 193 129 18' a. Use LRFD. Calculate the factored-load moment (not including the beam weight). (Express your answer to three significant figures.) Mu = ft-kips Select a shape. -Select- b. Use ASD. Calculate the required flexural strength (not including the beam weight). (Express your answer to three significant figures.) Ma = Select a shape. -Select- ft-kipsarrow_forwardGiven a portion of a pipe network below. Determine the true discharge in each pipe using the Hardy-Cross method. Use the Darcy-Weisbach formula with f = 0.02 for all pipes.arrow_forwardFor the cantilever retaining wall shown in the figure below, let the following data be given: Wall dimensions: H = 6.5 m, x1 = 0.3 m, x2 = 0.6 m, x3 = 0.8 m, x4 =2m, x5 = 0.8 m, D= 1.5 m, a = 0° Soil properties: 1 = 17.58 kN/m³, 1 = 36°, Y2 = 19.65 kN/m³, 215°, c230 kN/m² For 2=15°: Ne 10.98; N₁ = 3.94; N₁ = = 2.65. H Calculate the factor of safety with respect to overturning, sliding, and bearing capacity. Use Y concrete = 24.58 kN/m³. Also, use k₁ = k₂ = 2/3 and Pp FS (sliding) (EV) tan(k102) + Bk2c₂ + Pp Pa cos a (Enter your answers to three significant figures.) = 0 in equation FS (overturning)= FS(sliding)= FS(bearing)arrow_forward
- A W16×67 of A992 steel has two holes in each flange for 7/8-inch-diameter bolts. For A992 steel: Fy = 50 ksi, F₁ = 65 ksi. For a W16×67: bƒ = 10.2 in., tf = 0.665 in., Zx =130 in.3 and S = 117 in.3 a. Assuming continuous lateral support, verify that the holes must be accounted for and determine the nominal flexural strength. (Express your answer to three significant figures.) Mn = ft-kips b. What is the percent reduction in strength? (Express your answer to three significant figures.) % Reduction =arrow_forwardA gravity retaining wall is shown in the figure below. Calculate the factor of safety with respect to overturning and sliding, given the following data: Wall dimensions: H = 6 m, x1 = 0.6 m, x2 = 2 m, x3 = 2m, x4 = 0.5 m, x5 = 0.75 m, x6 = 0.8 m, D= 1.5 m Soil properties: 1 = 17.5 kN/m³, ø₁ = 32°, 12 = 18 kN/m³, =22°, 40 kN/m² Y₁ H D x2 x3 x5 X6 Use the Rankine active earth pressure in your calculation. Use Yconcrete = 23.58 kN/m³. Also, use k₁ = k₂ = 2/3 and P₁ = 0 in the equation FS S(sliding) | tan(k102) + Bk₂c½ + Pp (Σν). Pa cos a (Enter your answers to three significant figures.) FS (overturning) FS (sliding)arrow_forwardQ4 Use b member Castigliano's second theorem to determine the structure shown Forces In figure below longer than + In IF required. For all members member EC IS 10mm E = 200 KN/mm² 200KN YE FV 100 KN A = 1800 mm² and 2 2m 3m B D 3m 8M *arrow_forward
- For the cantilever retaining wall shown in the figure below, let the following data be given: Wall dimensions: H = 8 m, x1 = 0.4 m, x2 = 0.6 m, x3 = 1.5 m, x4 3.5 m, x5 = 0.96 m, D= 1.75 m, a = 10° Soil properties: ₁ = 17.3 kN/m³, 1₁ = 32°, Y2 = 17.6 kN/m³, 2=28°, c₂ = 30 kN/m² The value of Ka is 0.3210. For 2=28°: N = 25.80; N₁ = 14.72; N₁ = 16.72. 3. Also, use k₁ = k₂ = 2/3 and Pp = 0 in the equation Calculate the factor of safety with respect to overturning, sliding, and bearing capacity. Use concrete = 24.58 kN/m³. A FS (sliding) (V) tan(k₁₂) + Bk₂c½₂ + Pp Pa cos a (Enter your answers to three significant figures.) FS (overturning) FS(sliding) FS (bearing)arrow_forwardUse the Force Method to analyse the structure. After the analysis, draw Bending Moment and Shear Force diagrams. Redundants need to be put at 'j' and 'k' as moments (EI is constant all across the structure)I am so confused as to how to approach the problem. I would really appreciate an answer with a little explanation, or helpful working out!arrow_forwardI got 5.97 mm please show your work clearly. thank youarrow_forward
- Architectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage LearningEngineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage Learning




