Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.18P
To determine
Find the maximum load allowed by the foundation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sandstone bed with RQD=70% and γ=26.0 kN/m3 lies beneath 1.5m of overburden soil. A 2.0m x 2.0m square foundation is to be placed on top of the sandstone rock (i.e., at a depth below the ground level) to carry a column load. The unit weight of the soil is 18.0 kN/m3. Assuming the rock strength parameters has quc=50 MN/m2 and ∅=35°, determine the maximum load that can be allowwd on the foundation with the safety factor FS=3. The compressive strength f'c of concrete is 30.0 MN/m2.
i need the answer quickly
A sandstone bed with RQD = 70% and y = 26.0 kN/m³ lies
beneath 1.5 m of overburden soil. A 2.0 m X 2.0 m square
foundation is to be placed on top of the sandstone rock
(i.e., at a 1.5 depth below the ground level) to carry a
column load. The unit weight of the soil is 18.0 kN/m³.
Assuming the rock strength parameters from Problem 7.17,
Chapter 7 Solutions
Principles of Foundation Engineering (MindTap Course List)
Ch. 7 - A 7.5 ft wide rough continuous foundation is...Ch. 7 - In Problem 7.1, if there was no bedrock present...Ch. 7 - A 1.5 m × 2.0 m rectangular foundation is placed...Ch. 7 - In Problem 7.3, if no bedrock was present for at...Ch. 7 - Prob. 7.6PCh. 7 - Redo Problem 7.6 using Vesic’s (1975) solution...Ch. 7 - Prob. 7.8PCh. 7 - Prob. 7.9PCh. 7 - A continuous foundation having a width of 1.5 m is...Ch. 7 - A 2 m wide continuous foundation is to be placed...
Knowledge Booster
Similar questions
- A mat foundation, 15 m x 15 m, is made of reinforced concrete and to be supported by a three-layer soil profile, as shown. The mat is 1 m thick, and the average stress on the surface of the slab assessed from the structural engineering analysis is 75 kPa. (Unit weight of concrete = 23.58 kN/m^3) The 5-m thick sand layer immediately below the mat foundation has been compacted to standard Proctor specifications, most likely to optimum moisture content, which is why its moist density is given. (A) Determine the pre-construction effective stress at Point A (bottom of the clay layer). This is the in situ effective stress (overburden pressure) measured from the ground surface prior to the placement of the mat foundation. (B) Determine the vertical stress increase induced by the mat foundation at Point A using the “Influence Chart,” commonly referred to as the “Spider Web.” (C) Determine the vertical stress increase induced by the mat foundation at Point A using the “Stress Isobars.” (D)…arrow_forwardFoundation Ao Bx L Soil u, = Poisson's ratio E, = = modulus of elasticity H Rock Figure 11.43 11.2 Refer to Figure 11.43. A square rigid foundation measuring 1.8 m x 1.8 m in plan is supported by 8 m (H) of layered soil with the following characteristics: Layer type Thickness (m) E, (kKN/m?) Ya (KN/m?) Loose sand 0-2 20,680 17.6 Medium clay Dense sand 2- 4.5 7580 18.3 19.1 4.5 – 8 58,600 Given that P = 450 kN; D; = 1 m; and u, settlement of the foundation. = 0.3 for all layers, estimate the elastic O Cngagelamirg 2014 ©Cengage Learring 2014arrow_forwardThe initial principal stresses at a certain depth in a clay soil are 200 kPa on the horizontal plane and 100 kPa on the vertical plane. Construction of a surface foundation induces additional stresses consisting of a vertical stress of 45 kPa, a lateral (horizontal) stress of 20 kPa, and a counterclockwise (with respect to the horizontal plane) shear stress of 40 kPa. Plot Mohr's circle (1) for the initial state of the soil and (2) after construction of the foundation. Determine (a) the change in magnitude of the principal stress, (b) the change in maximum shear stress, and (c) the change in orientation of the principal stress plane resulting from the construction of the foundation.arrow_forward
- Problem II. The initial principal stresses at a certain depth in a clay soil are 100 kPa on the horizontal plane and 50 kPa on the vertical plane. Construction of a surface foundation induces additional stresses consisting of a vertical stress of 45 kPa, a lateral stress of 20 kPa, and a counterclockwise (with respect to the horizontal plane) shear stress of 40 kPa. a. Plot Mohr's circle (1) for the initial state of the soil and (2) after construction of the foundation. b. Determine the change in magnitude of the principal stresses. C. the change in maximum shear stress d. the change in orientation of the principal stress plane resulting from the construction of the foundation.arrow_forwardA foundation (Figure 1) transmits a stress of 100 kPa on the surface of a soil deposit. a. Evaluate increases of vertical stresses points A, B, and C at the depth of 2m and Sm (2 points) b. At what depth is the increase in vertical stress below A less than 10% of the surface stress? 6 m +2 m- A 2 m -4 m- Figure 1: Plan of foundationarrow_forwardQuestion attachedarrow_forward
- Please solve this detailed step by steparrow_forwardA vertical column load, P = 600 kN, is applied to a rigid square concrete foundation. The foundation rests at a depth Df= 0.75 m on a uniform dense sand with the following properties: average modulus of elasticity, Es = 20,600 kN/m², and Poisson's ratio, µs = 0.3. Calculate the required foundation dimensions if the allowable settlement under the center of the foundation is 25mm. 600 kN Foundation 0.75 m Вхв Soil Hs = 0.3 E, = 20, 600 kN/m² 5.0 m Rockarrow_forward1. Figure 1. shows a continuous foundation on a deposit of sand layer and variation of the elasticity of the soil (E.). Assuming y = 18 kN/m³ and C2 for 10 years, calculate the elastic settlement of the foundation using the strain influence factor method of Schmertmann et al., 1978. 1.5 m Sand 2.5 m 0 2 14 q=195 kN/m² Depth (m) Figure 1. E,= 6000 E, <= 12,000 E, (kN/m²) E,= 10,000arrow_forward
- Subject : Geotechnical Engineering Df=5ft, B=2ft, H=10ft, and Es=5000 psi, q=200 psf Determine the elastic settlement of a square foundation on saturated clay layer.arrow_forwardConsider the case of a continuous foundation with B = 2 m, Dr = 2.0 m, and H=2.0 m. The following are given for the two soil layers: = 32° Top sand layer (stronger layer): Unit weight y₁ = 17.5 kN/m³, 1= 32°, C'₁ = 0 Bottom clay layer (weaker layer): Unit weight y2 = 16.5 kN/m³, 2= 0, Cu (2) = 25 kPa, Determine the gross ultimate load per unit length of the foundation. Ne N₁ Ny 35.49 23.18 30.22arrow_forwardFor the embedded strip footing (infinitely long in the out-of-plane direction) shown below, the maximum vertical pressure that the soil can bear before failure is 100 kPa (i.e., qmax should not exceed 100 kPa). What is the maximum overall eccentricity of the foundation in mm before failure? (answer tolerance = 2%). Consider γconcrete = 25 kN/m3, γsoil = 18 kN/m3 and assume that the width of the embedded column is negligible, and the entire top of the foundation is covered with soil. Hint: for a strip footing, the calculations should be conducted assuming a 1-m long footing in the out-of-plane direction.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning