Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 7.8P
To determine
Calculate the maximum wall load that can be allowed on the continuous foundation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A column foundation [ 2.0 m x (1.7m] in size is located at a depth of 1.4 m in a strong cohesive soil layer 2.4 m thick has a unit weight of 19.7 kN/m3, cohesion of 29 kN/m2 and , friction angle of 28o. This layer overlies a weaker cohesive soil layer 15 m thick has a unit weight of 16.3 kN/m3, cohesion of 8 kN/m2 and friction angle of 20o. Determine the allowable foundation load if the factor of safety is 2.5. Show all the related labeled sketches clearly.
A sandstone bed with RQD=70% and γ=26.0 kN/m3 lies beneath 1.5m of overburden soil. A 2.0m x 2.0m square foundation is to be placed on top of the sandstone rock (i.e., at a depth below the ground level) to carry a column load. The unit weight of the soil is 18.0 kN/m3. Assuming the rock strength parameters has quc=50 MN/m2 and ∅=35°, determine the maximum load that can be allowwd on the foundation with the safety factor FS=3. The compressive strength f'c of concrete is 30.0 MN/m2.
Question attached
Chapter 7 Solutions
Principles of Foundation Engineering (MindTap Course List)
Ch. 7 - A 7.5 ft wide rough continuous foundation is...Ch. 7 - In Problem 7.1, if there was no bedrock present...Ch. 7 - A 1.5 m × 2.0 m rectangular foundation is placed...Ch. 7 - In Problem 7.3, if no bedrock was present for at...Ch. 7 - Prob. 7.6PCh. 7 - Redo Problem 7.6 using Vesic’s (1975) solution...Ch. 7 - Prob. 7.8PCh. 7 - Prob. 7.9PCh. 7 - A continuous foundation having a width of 1.5 m is...Ch. 7 - A 2 m wide continuous foundation is to be placed...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- The initial principal stresses at a certain depth in a clay soil are 200 kPa on the horizontal plane and 100 kPa on the vertical plane. Construction of a surface foundation induces additional stresses consisting of a vertical stress of 45 kPa, a lateral (horizontal) stress of 20 kPa, and a counterclockwise (with respect to the horizontal plane) shear stress of 40 kPa. Plot Mohr's circle (1) for the initial state of the soil and (2) after construction of the foundation. Determine (a) the change in magnitude of the principal stress, (b) the change in maximum shear stress, and (c) the change in orientation of the principal stress plane resulting from the construction of the foundation.arrow_forwardA concrete foundation 3 m wide, 9 m long and 0.75 m thick is to be founded at a depth of 1.5 m in a deep deposit of dense sand. The angle of shearing resistance of the sand is 35° and its unit weight is 19 kN/m². The unit weight of concrete is 24 kN/m³. Using the working stress design approach with a factor of safety, Fs = 3.0: Determine the safe bearing capacity of the sand deposit under the prevailing conditions. Determine the safe bearing capacity of the foundation if it is subjected to a vertical load of 2200 kN and a horizontal load of 500 kN. The resulting eccentricity is 0.3 m in the foundation width (B) direction QpCarrow_forwardProblem II. The initial principal stresses at a certain depth in a clay soil are 100 kPa on the horizontal plane and 50 kPa on the vertical plane. Construction of a surface foundation induces additional stresses consisting of a vertical stress of 45 kPa, a lateral stress of 20 kPa, and a counterclockwise (with respect to the horizontal plane) shear stress of 40 kPa. a. Plot Mohr's circle (1) for the initial state of the soil and (2) after construction of the foundation. b. Determine the change in magnitude of the principal stresses. C. the change in maximum shear stress d. the change in orientation of the principal stress plane resulting from the construction of the foundation.arrow_forward
- Consider the case of a continuous foundation with B = 2 m, Dr = 2.0 m, and H=2.0 m. The following are given for the two soil layers: = 32° Top sand layer (stronger layer): Unit weight y₁ = 17.5 kN/m³, 1= 32°, C'₁ = 0 Bottom clay layer (weaker layer): Unit weight y2 = 16.5 kN/m³, 2= 0, Cu (2) = 25 kPa, Determine the gross ultimate load per unit length of the foundation. Ne N₁ Ny 35.49 23.18 30.22arrow_forwardFor the embedded strip footing (infinitely long in the out-of-plane direction) shown below, the maximum vertical pressure that the soil can bear before failure is 100 kPa (i.e., qmax should not exceed 100 kPa). What is the maximum overall eccentricity of the foundation in mm before failure? (answer tolerance = 2%). Consider γconcrete = 25 kN/m3, γsoil = 18 kN/m3 and assume that the width of the embedded column is negligible, and the entire top of the foundation is covered with soil. Hint: for a strip footing, the calculations should be conducted assuming a 1-m long footing in the out-of-plane direction.arrow_forwardA mat foundation, 15 m x 15 m, is made of reinforced concrete and to be supported by a three-layer soil profile, as shown. The mat is 1 m thick, and the average stress on the surface of the slab assessed from the structural engineering analysis is 75 kPa. (Unit weight of concrete = 23.58 kN/m^3) The 5-m thick sand layer immediately below the mat foundation has been compacted to standard Proctor specifications, most likely to optimum moisture content, which is why its moist density is given. (A) Determine the pre-construction effective stress at Point A (bottom of the clay layer). This is the in situ effective stress (overburden pressure) measured from the ground surface prior to the placement of the mat foundation. (B) Determine the vertical stress increase induced by the mat foundation at Point A using the “Influence Chart,” commonly referred to as the “Spider Web.” (C) Determine the vertical stress increase induced by the mat foundation at Point A using the “Stress Isobars.” (D)…arrow_forward
- A sandstone bed with RQD = 70% and y = 26.0 kN/m³ lies beneath 1.5 m of overburden soil. A 2.0 m X 2.0 m square foundation is to be placed on top of the sandstone rock (i.e., at a 1.5 depth below the ground level) to carry a column load. The unit weight of the soil is 18.0 kN/m³. Assuming the rock strength parameters from Problem 7.17,arrow_forward= Figure 2 shows a rectangular shallow foundation. The foundation measures 1.5 m x3 m (B x L) in plan. The clay layer is normally consolidated with: Ce=0.27; He 3 m; e 0.92; average effective stress on the clay layer due to applied foundation load Ao=24 kN/m². Determine the primary consolidation settlement of the foundation. Sand Y = 16.5 kN/m³ Sand Yat 17.8 kN/m³ Normally consolidated clay Ysat 18.2 kN/m³ = 0.92; C = 0.27 170 kN/m² 1m 1.5 m Ground water table --- --- 15 m 3 marrow_forwardFoundation Ao Bx L Soil u, = Poisson's ratio E, = = modulus of elasticity H Rock Figure 11.43 11.2 Refer to Figure 11.43. A square rigid foundation measuring 1.8 m x 1.8 m in plan is supported by 8 m (H) of layered soil with the following characteristics: Layer type Thickness (m) E, (kKN/m?) Ya (KN/m?) Loose sand 0-2 20,680 17.6 Medium clay Dense sand 2- 4.5 7580 18.3 19.1 4.5 – 8 58,600 Given that P = 450 kN; D; = 1 m; and u, settlement of the foundation. = 0.3 for all layers, estimate the elastic O Cngagelamirg 2014 ©Cengage Learring 2014arrow_forward
- I need the answer as soon as possiblearrow_forwardProblem (4.10): The foundation plan shown in the figure below is subjected to a uniform contact pressure of 40 kN/m². Determine the vertical stress increment due to the foundation load at (5m) depth below the point (x). →|1.5m + 1.5m 2m 3 0.5m 2m + 3m 3m 3marrow_forwardThe attached figure shows the plan of rectangular foundation which transmits a uniform contact pressure of 120 kN/m2. The width of the foundation is 15 m. A) Determine the increase in vertical pressure at a depth of 10 m below point A B) The vertical stress at a depth of 10m below point Barrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning