EBK ELEMENTARY SURVEYING
15th Edition
ISBN: 8220106714225
Author: GHILANI
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 7.14P
?.14 Similar to Problem ?.13 El, except the azimuth of DE is 35 D 58 ’06 ” and angles to the right DEF and EFG are 21°44’52” and 86 D 10 ’ 14” respectively.
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule08:00
Students have asked these similar questions
ضهقعفكضكشتبتلتيزذظظؤوروىووؤءظكصحبت٢٨٩٤٨٤ع٣خ٩@@@#&#)@)
A steel rod 100 ft long holds a 200 lb weight as shown. If the diameter of the circular rod is ¼ inch, find the
maximum normal stress in the road, taking into account the weight of the rod itself. Use: density of steel = ϒ = 490
lb/ft3
.
ضهقعفكضكشتبتلتيزذظظؤوروىووؤءظكصحبت٢٨٩٤٨٤ع٣خ٩@@@#&#)@)
Chapter 7 Solutions
EBK ELEMENTARY SURVEYING
Ch. 7 - Define the different reference meridians that can...Ch. 7 - Prob. 7.2PCh. 7 - Why is it important to adopt a standard angle...Ch. 7 - Prob. 7.4PCh. 7 - Prob. 7.5PCh. 7 - In Problems 7.6 through 7.? I9, convert the...Ch. 7 - Prob. 7.7PCh. 7 - Prob. 7.8PCh. 7 - Prob. 7.9PCh. 7 - Prob. 7.10P
Ch. 7 - Prob. 7.11PCh. 7 - Prob. 7.12PCh. 7 - For a bearing DE = NUS 5 53’56 ”WT and angles to...Ch. 7 - ?.14 Similar to Problem ?.13 El, except the...Ch. 7 - Prob. 7.15PCh. 7 - Course AB of a ?ve-sided traverse runs due north....Ch. 7 - Prob. 7.17PCh. 7 - Prob. 7.18PCh. 7 - Prob. 7.19PCh. 7 - Prob. 7.20PCh. 7 - Prob. 7.21PCh. 7 - Prob. 7.22PCh. 7 - Prob. 7.23PCh. 7 - Prob. 7.24PCh. 7 - Prob. 7.25PCh. 7 - Prob. 7.26PCh. 7 - Prob. 7.27PCh. 7 - Prob. 7.28PCh. 7 - Prob. 7.29PCh. 7 - For Problems 7.30 through 7.32 the observed...Ch. 7 - Prob. 7.31PCh. 7 - Prob. 7.32PCh. 7 - Prob. 7.33PCh. 7 - Prob. 7.34PCh. 7 - Prob. 7.35PCh. 7 - Prob. 7.36PCh. 7 - Prob. 7.37PCh. 7 - Prob. 7.38P
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Comprehension Check 8-5
A 75-gram [g] cylindrical rod is measured to be 10 centimeters [cm] long and 2.5 centim...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Part of the following pseudocode is incompatible with the Java, Python, C, and C++ languages. Identify the prob...
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Write an IfThen statement that assigns 0 to intX when intY is equal to 20.
Starting Out With Visual Basic (8th Edition)
What are the advantages and disadvantages of a four-jaw independent chuck versus a three-jaw chuck?
Degarmo's Materials And Processes In Manufacturing
The Python built-in function str () will convert a numerical argument into a character string representation, a...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
T F Different operating systems have different rules for naming files.
Starting Out with C++ from Control Structures to Objects (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- ضهقعفكضكشتبتلتيزذظظؤوروىووؤءظكصحبت٢٨٩٤٨٤ع٣خ٩@@@#&#)@)arrow_forwardA square flexible foundation of width B applies a uniform pressure go to the underlying ground. (a) Determine the vertical stress increase at a depth of 0.5B below the center using Aσ beneath the corner of a uniform rectangular load given by Aσ Variation of Influence Value I m n 0.5 0.6 0.8 1.0 0.2 0.4 0.2 0.01790 0.03280 0.03866 0.04348 0.05042 0.05471 0.4 0.03280 0.06024 0.07111 0.08009 0.09314 0.10129 0.5 0.03866 0.07111 0.08403 0.09473 0.11035 0.12018 0.6 0.04348 0.08009 0.09473 0.10688 0.12474 0.13605 0.8 0.05042 0.09314 0.11035 0.12474 0.14607 0.15978 1.0 0.05471 0.10129 0.12018 0.13605 0.15978 0.17522 (Enter your answer to three significant figures.) Ασ/90 = Activity Frame (b) Determine the vertical stress increase at a depth of 0.5B below the center using the 2 : 1 method equation below. 90 x B x L Aσ = (B+ z) (L+ z) (Enter your answer to three significant figures.) Δσ/90 = (c) Determine the vertical stress increase at a depth of 0.5B below the center using stress isobars in…arrow_forwardNeed help!!!arrow_forward
- 2 A flexible circular area is subjected to a uniformly distributed load of 450 kN/m² (the figure below). The diameter of the load area is 2 m. Estimate the average stress increase (Aσay) below the center of the loaded area between depths of 3 m and 6 m. H₂ 1.0 H₂ B 0.8 CHI HD DV 0.6 C 1.0 1.5 0.4 0.2 6.0 8.0. 10.0 2.0 2.5 3.0 4.0 5.0 H₁ (Enter your answer to two significant figures.) Δσαν τ kN/m² 6arrow_forwardRefer to the figure below. Using the procedure outlined in your textbook, determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 45 tons. Use the equations: Aσ = and qo x B x L (B+ z)(L+ z) Aσ av (H2/H₁) Δσι +44 + Δσο net load 6 4:5 ft 10 ft 5ft x 5ft Sand Sand y=100 lb/ft³ Ysat 122 lb/ft³:" Ysat 120 lb/ft³: 0.7 C=0.25 Groundwater table C=0.06 Preconsolidation pressure = 2000 lb/ft² (Enter your answer to three significant figures.) Ασαν = lb/ft²arrow_forwardRefer to the figure below, which shows a flexible rectangular area. Given: B₁ = 4 ft, B₂ = 6 ft, L₁ = 8 ft, and L2 = 10 ft. If the area is subjected to a uniform load of 4100 lb/ft², determine the stress increase at a depth of 10 ft located immediately below point O. Use the table below. T B(1) 3 B(2) 2 L(1) * 4 L2) Table 1 Variation of Influence Value I n m 0.8 0.9 1.0 1.2 1.4 0.1 0.02576 0.02698 0.02794 0.02926 0.03007 0.2 0.05042 0.05283 0.05471 0.05733 0.05894 0.3 0.07308 0.07661 0.07938 0.08323 0.08561 0.4 0.09314 0.09770 0.10129 0.10631 0.10941 0.5 0.11035 0.11584 0.12018 0.12626 0.13003 0.6 0.12474 0.13105 0.13605 0.14309 0.14749 0.7 0.13653 0.14356 0.14914 0.15703 0.16199 0.8 0.14607 0.15371 0.15978 0.16843 0.17389 0.9 0.15371 0.16185 0.16835 0.1766 0.18357 1.0 0.15978 0.16835 0.17522 0.18508 0.19139 1.1 0.16843 0.17766 0.18508 0.19584 0.20278 (Enter your answer to three significant figures.) Aσ = lb/ft²arrow_forward
- Point loads of magnitude 100, 200, and 380 kN act at B, C, and D, respectively (in the figure below). Determine the increase in vertical stress at a depth of 6 m below point A. Use Boussinesq's equation. B 6 m A 6 m с 3 m D (Enter your answer to three significant figures.) Δαχτ kN/m²arrow_forwardTwo line loads q₁ = 30 kN/m and 92 = 44 kN/m of infinite lengths are acting on top of an elastic medium, as shown in the figure below. Find the vertical stress increase at A. 92 91 6 m 3 m 3 m Δσ A (Enter your answer to three significant figures.) Vertical stress increase at A = kN/m²arrow_forwardA flexible circular area is subjected to a uniformly distributed load of 144 kN/m² (see the figure below). The diameter of the load area is 2 m. Estimate the average stress increase (Aσay) below the center of the loaded area between depths of 3 m and 6 m. Use the equations: 1 Ασ = go 1 [1 + (2) ² ³/2 and Aσ av (H2/H1) Δσι + 41ση + Ασο 6 9 B/2 krark do Δε Aσ (Enter your answer to three significant figures.) Ασαν = kN/m²arrow_forward
- In construction what is the difference in general requirements specific project requirements?arrow_forwardRefer to the figure below. Determine the vertical stress increase Aσ at point A with the values q₁ = 90 kN/m, q2 = 410 kN/m, x₁ = 4m, x2 = 2.5 m, and z = 3 m. Line load = 91 Line load=92 Δε (Enter your answer to three significant figures.) Δατ kN/m²arrow_forwardRefer to the figure below. A strip load of q = 870 lb/ft² is applied over a width B = 36 ft. Determine the increase in vertical stress at point A located z = 15 ft below the surface. Given: x = 27 ft. Use the table below. B q = Load per unit area Aσ A Table 1 Variation of Ao/go with 2z/B and 2x/B 2x/B 2z/B 1.3 1.4 1.5 1.6 0.00 0.000 0.000 0.000 1.7 0.000 0.000 0.10 0.007 0.003 0.002 0.001 0.001 0.20 0.040 0.020 0.011 0.30 0.090 0.052 0.031 0.40 0.141 0.090 0.059 0.040 0.027 0.50 0.185 0.128 0.089 0.063 0.60 0.222 0.163 0.120 0.088 0.70 0.250 0.193 0.80 0.273 0.218 0.007 0.004 0.020 0.013 0.046 0.066 0.148 0.113 0.087 0.173 0.137 0.108 0.90 0.291 0.239 0.195 0.158 0.128 1.00 0.305 0.256 0.214 0.177 0.147 (Enter your answer to three significant figures.) lb/ft² Δοχ =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningArchitectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Architectural Drafting and Design (MindTap Course...
Civil Engineering
ISBN:9781285165738
Author:Alan Jefferis, David A. Madsen, David P. Madsen
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning