7-10 The rate of disappearance of HCI was measured for the following reaction:
The initial concentration of HCI is 1.85 M. Its concentration decreases to 1.58 M in 54.0 min. What is the
Interpretation:
The rate of given reaction with initial concentration of
Concept introduction:
Rate of reaction: The rate of the reaction is defined as extent of a reaction. For any reaction, it depends on the concentration change of limiting reagent formed in a reaction.
Concentration: Concentration of all chemical species takes part in a reaction depend on their moles present in per liter solution.
The rate is change in concentration of the reactant with change in time. It is mathematically represented as follows:
Answer to Problem 7.10P
Rate of reaction = 0.005 M/min
Explanation of Solution
Given information:
Reaction with initial concentration of
Put the given values in above expression.
Here, negative sign indicates the concentration of HCl decreases.
Rate of reaction = -0.005 M/min
Want to see more full solutions like this?
Chapter 7 Solutions
Introduction to General, Organic and Biochemistry
- The label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forward7-11 Consider the following reaction: Suppose we start the reaction with an initial iodomethane concentration of 0.260 M. This concentration increases to 0.840 M over a period of 1 h 20 min. What is the rate of reaction?arrow_forward7-35 A reaction has a high rate constant but a small equilibrium constant. What does this mean in terms of producing an industrial product?arrow_forward
- Consider the following statements: In general, the rate of a chemical reaction increases a bit at first because it takes a while for the reaction to get warmed up. After that, however, the rate of the reaction decreases because its rate is dependent on the concentrations of the reactants, and these are decreasing. Indicate everything that is correct in these statements, and indicate everything that is incorrect. Correct the incorrect statements and explain.arrow_forward7-13 Why are reactions between ions in aqueous solution generally much faster than reactions between covalent molecules?arrow_forwardHow do chemists envision reactions taking place in terms of the collision model for reactions? Give an example of a simple reaction and how you might envision the reaction’s taking place by means of a collision between the molecules.arrow_forward
- Give at least two physical properties that might be used to determine the rate of a reaction.arrow_forwardSubstances that poison a catalyst pose a major concern for many engineering designs, including those for catalytic converters. One design option is to add materials that react with potential poisons before they reach the catalyst. Among the commonly encountered catalyst poisons are silicon and phosphorus, which typically form phosphate or silicate ions in the oxidizing environment of an engine. Group 2 elements are added to the catalyst to react with these contaminants before they reach the working portion of the catalytic converter. If estimates show that a catalytic converter will be exposed to 625 g of silicon during its lifetime, what mass of beryllium would need to be included in the design?arrow_forwardA reaction is believed to occur by the following mechanism: Stepl: 2AI (Fast equilibrium) Step 2: I + B C (Slow) Overall: 2 A + B C What experimentally determined rate law would lead to this mechanism? (a) Rate = k[A][B] (b) Rate = k[A]2[B] (c) Rate = k[A]2 (d) Rate = k[I][B]arrow_forward
- 7-12 Two kinds of gas molecules are reacted at a set temperature. The gases are blown into the reaction vessel from two tubes. In setup A, the two tubes are aligned parallel to each other; in setup B, they are 900 to each other; and in setup C, they are aligned directly opposite each other. Which setup would yield the most effective collisions?arrow_forwardCandle wax is a mixture of hydrocarbons. In the reaction of oxygen with candle w ax in Figure 11.2, the rate of consumption of oxygen decreased with time after the flask was covered, and eventually' the flame went out. From the perspective of the kinetic-molecular theory, describe what is happening in the flask. FIGURE 11.2 When a candle burns in a closed container, the flame will diminish and eventually go out. As the amount of oxygen present decreases, the rate of combustion will also decrease. Eventually, the rate of combustion is no longer sufficient to sustain the flame even though there is still some oxygen present in the vessel.arrow_forwardGo to the PhET Reactions and change to Angled shot to see the difference. (a) What happens when the angle of the collision is changed? (b) Explain how this is relevant to rate of reaction.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning