PHY F/SCIENTIST MOD MASTERING 24 MO
17th Edition
ISBN: 9780137319497
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 6EAP
a. How much force does an 80 kg astronaut exert on his chair while sitting at rest on the launch pad?
b. How much force does the astronaut exert on his chair while accelerating straight up at 10 m/s2?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
e
61. At the local grocery store, you push a 14.5-kg shopping cart.
You stop for a moment to add a bag of dog food to your cart.
With a force of 12.0 N, you now accelerate the cart from rest
through a distance of 2.29 m in 3.00 s. What was the mass of the
dog food?
a. How much force does an 80 kg astronaut exert on his chair while sitting at rest on the launch pad?b. How much force does the astronaut exert on his chair while accelerating straight up at 10 m/s2?
a.
How far does she travel in 8 s?
3.)
The driver of mass 80 kg is strapped to the seat of his Ferrari. If she comes to a stop
after traveling at 30 m/s in 2 s, determine the force on the driver from the seatbelt.
Chapter 7 Solutions
PHY F/SCIENTIST MOD MASTERING 24 MO
Ch. 7 - You find yourself in the middle of a frozen lake...Ch. 7 - How does a sprinter sprint? What is the forward...Ch. 7 - How does a rocket take off? What is the upward...Ch. 7 - How do basketball players jump straight up into...Ch. 7 - A mosquito collides head-on with a car traveling...Ch. 7 - A mosquito collides head-on with a car traveling...Ch. 7 - A small car is pushing a large truck. They are...Ch. 7 - A very smart 3-year-old child is given a wagon for...Ch. 7 - Teams red blue are having a tug-of-war. According...Ch. 7 - Will hanging a magnet in front of the iron cart in...
Ch. 7 - FIGURE Q7.11 shows two masses at rest. The string...Ch. 7 - FIGURE Q7.12 shows two masses at rest. The string...Ch. 7 - The hand in FIGURE Q7.13 is pushing on the back of...Ch. 7 - A and B in FIGURE Q7.14 are connected by a...Ch. 7 - In case a in FIGURE Q7.15, block A is accelerated...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises I through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - For Exercises 1 through 5: a. Draw an interaction...Ch. 7 - a. How much force does an 80 kg astronaut exert on...Ch. 7 - Block B in FIGURE EX7.7 rests on a surface for...Ch. 7 - A 1000 kg car pushes a 2000 kg truck that has a...Ch. 7 - with masses of 1 kg, 2 kg, and 3 kg are lined up...Ch. 7 - A 3000 kg meteorite falls toward the earth. What...Ch. 7 - The foot of a 55 kg sprinter is on the ground for...Ch. 7 - A steel cable lying flat on the floor drags a 20...Ch. 7 - An 80 kg spacewalking astronaut pushes off a 640...Ch. 7 - The sled dog in FIGURE EX7.14 drags sleds A and B...Ch. 7 - Two-thirds of the weight of a 1500 kg car rests on...Ch. 7 - FIGURE EX7.16 shows two 1.0 kg blocks connected by...Ch. 7 - What is the tension in the rope of Figure EX7.17?...Ch. 7 - A 2.0-m-long, 500 g rope pulls a 10 kg block of...Ch. 7 - A woman living in a third-story apartment is...Ch. 7 - Two blocks are attached to opposite ends of a...Ch. 7 - The cable cars in San Francisco are pulled along...Ch. 7 - A 2.0 kg rope hangs from the ceiling. What is the...Ch. 7 - A mobile at the art museum has a 2.0 kg steel cat...Ch. 7 - The 1.0 kg block in FIGURE EX7.24 is tied to the...Ch. 7 - The 100 kg block in FIGURE EX7.25 takes 6.0 s to...Ch. 7 - FIGURE P7.26 shows two strong magnets on opposite...Ch. 7 - FIGURE P7.27 shows a 6.0 N force pushing two...Ch. 7 - 28. A rope of length L and mass m is suspended...Ch. 7 - Prob. 29EAPCh. 7 - 30. A Federation starship (2.0 × 106 kg) uses its...Ch. 7 - Your forehead can withstand a force of about 6.0...Ch. 7 - Bob, who has a mass of 75 kg, can throw a 500 g...Ch. 7 - Two packages at UPS start sliding down the 20°...Ch. 7 - The two blocks in FIGURE P7.34 are sliding down...Ch. 7 - The coefficient of static friction is 0.60 between...Ch. 7 - The block of mass M in FIGURE P7.36 slides on a...Ch. 7 - The 10.2 kg block in FIGURE P7.37 is held in place...Ch. 7 - The coefficient of kinetic friction between the...Ch. 7 - FIGURE P7.39 shows a block of mass m resting on a...Ch. 7 - A4.0 kg box is on a frictionless 35° slope and is...Ch. 7 - Prob. 41EAPCh. 7 - The 2000 kg cable car shown in FIGURE P7.42...Ch. 7 - The century-old ascensores in Valparaiso, Chile,...Ch. 7 - A 3200 kg helicopter is flying horizontally. A 250...Ch. 7 - A house painter uses the chair-and-pulley...Ch. 7 - A long, 1.0 kg rope hangs from a support that...Ch. 7 - Prob. 47EAPCh. 7 - Prob. 48EAPCh. 7 - Find an expression for the magnitude of the...Ch. 7 - Prob. 50EAPCh. 7 - Prob. 51EAPCh. 7 - Prob. 52EAPCh. 7 - The lower block in FIGURE CP7.53 is pulled on by a...Ch. 7 - Prob. 54EAPCh. 7 - Prob. 55EAPCh. 7 - A 40-cm-diameter, 50-cm-tall, 15 kg hollow...Ch. 7 - 57. FIGURE CP7.57 shows a 200 g hamster sitting on...Ch. 7 - Prob. 58EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) An elevator of mass m moving upward has two forces acting on it: the upward force of tension in the cable and the downward force due to gravity. When the elevator is accelerating upward, which is greater. T or w? (b) When the elevator is moving at a constant velocity upward, which is greater. T or w2 (c) When the elevator is moving upward, but the acceleration is downward, which is greater. T or w? (d) Let the elevator have a mass of 1500 kg and an upward acceleration of 2.5 m/s2. Find T. Is your answer consistent with the answer to part (a)? (e) The elevator of part (d) now moves with a constant upward velocity of 10 m/s. Find T. Is your answer consistent with your answer to part (b)? (f) Having initially moved upward with a constant velocity, the elevator begins to accelerate downward at 1.50 m/s2. Find T Is your answer consistent with your answer to part (c)?arrow_forwardA car of mass 875 kg is traveling 30.0 m/s when the driver applies the brakes, which lock the wheels. The car skids for 5.60 s in the positive x-direction before coming to rest. (a) What is the cars acceleration? (b) What magnitude force acted on the car during this time? (c) How far did the car travel?arrow_forwardThe mass of a particle is 15 kg. (a) What is its weight on Earth? (b) What is its weight on the Moon? (c) What is its mass on the Moon? (d) What is its weight in outer space far from any celestial body? (e) What is its mass at this point?arrow_forward
- 7. An engine is used to pull a train of two cars out of a mine. The floor of the mine slopes upward at an angle of 30°. Each car has a mass of 104 kg and normally travels without friction on the tracks. The engine can exert a maximum force of 1.5 · 105 N on car A. a. The engine first accelerates the cars from rest by exerting its maximum force. What is the acceleration of the cars ? b. Once the train has reached a reasonable speed, the engineer throttles back so that they continue at a constant speed. Now what force does the engine exert on car A? c. What is the tension in the massless, straight chain connecting cars A and B while they are travelling at a constant speed? d. If the engineer again throttles back so that the force exerted by the engine on car A decreases at the constant rate of 3N per second, how long before the train stops moving up the track? Assume the original speed was 3 meters per second. A В e=30°arrow_forwardA 3.0 kg puck slides due east on a horizontal frictionless surface at a constant speed of 4.5 m/s. Then a force of magnitude 6.0 N, directed due north, is applied for 1.5 s. Afterward,a. What is the northward component of the puck’s velocity?A. 0.50 m/s B. 2.0 m/s C. 3.0 m/sD. 4.0 m/s E. 4.5 m/sb. What is the speed of the puck?A. 4.9 m/s B. 5.4 m/s C. 6.2 m/sD. 7.5 m/s E. 11 m/sarrow_forwardR3arrow_forward
- ..You get in an elevator, and step onto a weighing scale. You also recall that your normal weight is 625N. A. If the elevator has an acceleration of magnitude 2.50m/s?, what does the scale read as you go UP inside the elevator? b. What does the scale read if as you go DOWN with an acceleration of 3.33m/s??arrow_forwardFigure 41. VA 276-kg glider is being pulled by a 1 950-kg jet along a 2.20 m/s² to horizontal runway with an acceleration of a the right as in Figure P4.41. Find (a) the thrust provided by the jet's engines and (b) the magnitude of the tension in the cable connecting the jet and glider. Figure P4.41arrow_forwarda. You are a newly graduated astronaut preparing for your first trip into space. Plans call for your spacecraft to reach a velocity of 500. m/s after 2.40 minutes. If you weigh 735 N, what force will be exerted on your body? Assume the acceleration is constant. b. A car is traveling at 25 m/s when the driver spots a large pothole in the road a distance of 30 m ahead. He immediately applies the brakes. If his acceleration is -27 m/s^2, does he manage to stop before reaching the pothole?arrow_forward
- A 403.280 kg car is traveling down a 25-degree slope. At the instant that the speed is 13 m/s, the driver applied the brakes. What constant force (F), parallel to the road, must be provided by the brakes if the car is to stop in 68.310 meters? CHOICES: A. 9043.234 N B. 2908.952 N C. 8635.722 N D. 1292.535 N E. 5084.885 Narrow_forwardIf a net horizontal force of 132 N is applied to a person with mass 60 kg who is resting on the edge of a swimming pool, what horizontal acceleration is produced? A A. 7920 m/s^2 (в) в. 29.20 m/s2 C. 2.2 m/s^2 D. D. 22.2 m/s^2 E E. No answerarrow_forward2 W S X 3. Four blocks, with masses m₁ = 5.90 kg, m₂ = 5.10 kg, m3 = 8.00 kg, and m4 = 7.50 kg, are pulled on a horizontal frictionless surface by a 35.00 N force that makes a 25° angle (0) with the horizontal (see figure). What is the magnitude of the tension between the m₁ and m₂ blocks? N 3 E D C 888 R F % 5 20 V T ma 6 20 MacBook Air Y m3 B 7 H 109 91100/9/1 30 U N m₂ 8 J m₁ 9 K M 16 ceiló ceiló eciloarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License