A roller coaster travels in a circular path, (a) Identify the forces on a passenger at the top of the circular loop that cause centripetal acceleration. Show the direction of all forces in a sketch, (b) Identify the forces on the passenger at the bottom of the loop that produce centripetal acceleration. Show these in a sketch, (c) Based on your answers to parts (a) and (b), at what point, top or bottom, should the seat exert the greatest force on the passenger? (d) Assume the speed of the roller coaster is 4.00 m/s at the top of the loop of radius 8.00 m. Find the force exerted by the seat on a 70.0-kg passenger at the top of the loop. Then, assume the speed remains the same at the bottom of the loop and find the force exerted by the seat on the passenger at this point. Are your answers consistent with your choice of answers for parts (a) and (b)?
A roller coaster travels in a circular path, (a) Identify the forces on a passenger at the top of the circular loop that cause centripetal acceleration. Show the direction of all forces in a sketch, (b) Identify the forces on the passenger at the bottom of the loop that produce centripetal acceleration. Show these in a sketch, (c) Based on your answers to parts (a) and (b), at what point, top or bottom, should the seat exert the greatest force on the passenger? (d) Assume the speed of the roller coaster is 4.00 m/s at the top of the loop of radius 8.00 m. Find the force exerted by the seat on a 70.0-kg passenger at the top of the loop. Then, assume the speed remains the same at the bottom of the loop and find the force exerted by the seat on the passenger at this point. Are your answers consistent with your choice of answers for parts (a) and (b)?
A roller coaster travels in a circular path, (a) Identify the forces on a passenger at the top of the circular loop that cause centripetal acceleration. Show the direction of all forces in a sketch, (b) Identify the forces on the passenger at the bottom of the loop that produce centripetal acceleration. Show these in a sketch, (c) Based on your answers to parts (a) and (b), at what point, top or bottom, should the seat exert the greatest force on the passenger? (d) Assume the speed of the roller coaster is 4.00 m/s at the top of the loop of radius 8.00 m. Find the force exerted by the seat on a 70.0-kg passenger at the top of the loop. Then, assume the speed remains the same at the bottom of the loop and find the force exerted by the seat on the passenger at this point. Are your answers consistent with your choice of answers for parts (a) and (b)?
Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values.
Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all steps
An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave.
What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction?
Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all steps
Another worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk).
Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.