College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 14WUE
(a)
To determine
The change in the system’s gravitational potential energy.
(b)
To determine
The speed of the satellite at the point.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A space capsule of mass 505 kg is at rest 8.00 x 10' m from the center of the Earth. When it has fallen 5.00 x 10° m closer to the Earth, finu le
(a) What is the change in the system's gravitational potential energy?
(b) Find the speed of the satellite at that point.
m/s
A satellite with mass 898 kg is in a circular orbit with an orbital speed of 5840 m/s around the earth.
a) What is the new orbital speed after friction from the earth's upper atmosphere has done −7.5×10^9 J of work on the satellite?
b) Does the speed increase or decrease?
A satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.1 × 104 m/s. The mass of the planet is M = 6.04 × 1024 kg. The mass of the satellite is m = 1.2 × 103 kg. First, find an expression for the gravitational potential energy PE in terms of G, M, m, and R.
a)Calculate the value of PE in joules.
b)Enter an expression for the total energy E of the satellite in terms of m and v.
c)Calculate the value of the total energy E in joules.
Chapter 7 Solutions
College Physics
Ch. 7.1 - A rigid body is rotating counterclockwise about a...Ch. 7.1 - Suppose the change in angular position for each of...Ch. 7.2 - Consider again the pairs of angular positions for...Ch. 7.3 - Andrea and Chuck are riding on a merry-go-round....Ch. 7.3 - When the merry-go-round of Quick Quiz 7.4 is...Ch. 7.4 - A racetrack is constructed such that two arcs of...Ch. 7.4 - An object moves in a circular path with constant...Ch. 7.5 - A ball is falling toward the ground. Which of the...Ch. 7.5 - A planet has two moons with identical mass. Moon 1...Ch. 7.6 - Suppose an asteroid has a semimajor axis of 4 AU....
Ch. 7 - Math Review A circular track has a radius of 125...Ch. 7 - Math Review (a) Convert 47.0 to radians, using the...Ch. 7 - (a) Convert 12.0 rev/min to radians per second....Ch. 7 - A carnival carousel accelerates nonuniformly from...Ch. 7 - Prob. 5WUECh. 7 - A grindstone increases in angular speed uniformly...Ch. 7 - A bicyclist starting at rest produces a constant...Ch. 7 - A car of mass 1 230 kg travels along a circular...Ch. 7 - A man whirls a 0.20-kg piece of lead attached to...Ch. 7 - (a) Find the magnitude of the gravity force...Ch. 7 - What is the gravitational acceleration close to...Ch. 7 - Prob. 12WUECh. 7 - Prob. 13WUECh. 7 - Prob. 14WUECh. 7 - A comet has a period of 76.3 years and moves in an...Ch. 7 - In a race like the Indianapolis 500, a driver...Ch. 7 - If someone told you that astronauts are weightless...Ch. 7 - If a cars wheels are replaced with wheels of...Ch. 7 - At night, you are farther away from the Sun than...Ch. 7 - A pendulum consists of a small object called a bob...Ch. 7 - Because of Earths rotation about its axis, you...Ch. 7 - It has been suggested that rotating cylinders...Ch. 7 - Describe the path of a moving object in the event...Ch. 7 - A pail of water can be whirled in a vertical...Ch. 7 - Use Keplers second law to convince yourself that...Ch. 7 - Is it possible for a car to move in a circular...Ch. 7 - A child is practicing for a BMX race. His speed...Ch. 7 - An object executes circular motion with constant...Ch. 7 - Angular Speed and Angular Acceleration (a) Find...Ch. 7 - A wheel has a radius of 4.1 m. How far (path...Ch. 7 - The tires on a new compact car have a diameter of...Ch. 7 - A potters wheel moves uniformly from rest to an...Ch. 7 - A dentists drill starts from rest. After 3.20 s of...Ch. 7 - A centrifuge in a medical laboratory rotates at an...Ch. 7 - A machine part rotates at an angular speed of 0.06...Ch. 7 - A bicycle is turned upside down while its owner...Ch. 7 - The diameters of the main rotor and tail rotor of...Ch. 7 - The tub of a washer goes into its spin-dry cycle,...Ch. 7 - A car initially traveling at 29.0 m/s undergoes a...Ch. 7 - A 45.0-cm diameter disk rotates with a constant...Ch. 7 - A rotating wheel requires 3.00 s to rotate 37.0...Ch. 7 - An electric motor rotating a workshop grinding...Ch. 7 - A car initially traveling eastward turns north by...Ch. 7 - It has been suggested that rotating cylinders...Ch. 7 - (a) What is the tangential acceleration of a bug...Ch. 7 - An adventurous archeologist (m = 85.0 kg) tries to...Ch. 7 - One end of a cord is fixed and a small 0.500-kg...Ch. 7 - A coin rests 15.0 cm from the center of a...Ch. 7 - A 55.0-kg ice skater is moving at 4.00 m/s when...Ch. 7 - A 40.0-kg child swings in a swing supported by two...Ch. 7 - A certain light truck can go around a flat curve...Ch. 7 - A sample of blood is placed in a centrifuge of...Ch. 7 - A 50.0-kg child stands at the rim of a...Ch. 7 - A space habitat for a long space voyage consists...Ch. 7 - An air puck of mass m1 = 0.25 kg is tied to a...Ch. 7 - Prob. 28PCh. 7 - A woman places her briefcase on the backseat of...Ch. 7 - A pail of water is rotated in a vertical circle of...Ch. 7 - A 40.0-kg child takes a ride on a Ferris wheel...Ch. 7 - Prob. 32PCh. 7 - The average distance separating Earth and the Moon...Ch. 7 - A satellite has a mass of 100 kg and is Located at...Ch. 7 - A coordinate system (in meters) is constructed on...Ch. 7 - Prob. 36PCh. 7 - Objects with masses of 200. kg and 500. kg are...Ch. 7 - Use the data of Table 7.3 to find the point...Ch. 7 - Prob. 39PCh. 7 - Two objects attract each other with a...Ch. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - A satellite of Mars, called Phoebus, has an...Ch. 7 - Prob. 44PCh. 7 - Two satellites are in circular orbits around the...Ch. 7 - Additional Problems A synchronous satellite. which...Ch. 7 - (a) One of the moons of Jupiter, named Io, has an...Ch. 7 - Neutron stars are extremely dense objects that are...Ch. 7 - One method of pitching a softball is called the...Ch. 7 - A digital audio compact disc (CD) carries data...Ch. 7 - An athlete swings a 5.00-kg ball horizontally on...Ch. 7 - A car rounds a banked curve where the radius of...Ch. 7 - Prob. 53APCh. 7 - A 0.400-kg pendulum bob passes through the lowest...Ch. 7 - A car moves at speed v across a bridge made in the...Ch. 7 - Prob. 56APCh. 7 - Because of Earths rotation about its axis, a point...Ch. 7 - Prob. 58APCh. 7 - In Robert Heinleins The Moon Is a Harsh Mistress,...Ch. 7 - A roller coaster travels in a circular path, (a)...Ch. 7 - In a home laundry dryer, a cylindrical tub...Ch. 7 - A model airplane of mass 0.750 kg flies with a...Ch. 7 - A skier starts at rest at the top of a large...Ch. 7 - Casting of molten metal is important in many...Ch. 7 - Suppose a 1 800-kg car passes over a bump in a...Ch. 7 - A stuntman whose mass is 70 kg swings from the end...Ch. 7 - Prob. 67APCh. 7 - The pilot of an airplane executes a constant-speed...Ch. 7 - A piece of mud is initially at point A on the rim...Ch. 7 - A 0.275-kg object is swung in a vertical circular...Ch. 7 - A 4.0-kg object is attached to a vertical rod by...Ch. 7 - The maximum lift force on a bat is proportional to...Ch. 7 - (a) A luggage carousel at an airport has the form...Ch. 7 - A 0.50-kg ball that is tied to the end of a 1.5-m...Ch. 7 - In a popular amusement park ride, a rotating...Ch. 7 - A massless spring of constant k = 78.4 N/m is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardA pendulum consists of a small object called a bob hanging from a light cord of fixed length, with the top end of the cord fixed, as represented in Figure OQ5.6. The bob moves without friction, swinging equally high on both sides. It moves from its turning point A through point B and reaches its maximum speed at point C. (a) Of these points, is there a point where the bob has nonzero radial acceleration and zero tangential acceleration? If so, which point? What is the direction of its total acceleration at this point? (b) Of these points, is there a point where the bob has nonzero tangential acceleration and zero radial acceleration? If so, which point? What is the direction of its total acceleration at this point? (c) Is there a point where the bob has no acceleration? If so, which point? (d) Is there a point where the bob has both nonzero tangential and radial acceleration? If so, which point? What is the direction of its total acceleration at this point? Figure OQ5.6arrow_forwardIn each situation shown in Figure P8.12, a ball moves from point A to point B. Use the following data to find the change in the gravitational potential energy in each case. You can assume that the radius of the ball is negligible. a. h = 1.35 m, = 25, and m = 0.65 kg b. R = 33.5 m and m = 756 kg c. R = 33.5 m and m = 756 kg FIGURE P8.12 Problems 12, 13, and 14.arrow_forward
- Rank the following quantities of energy from largest to the smallest. State if any are equal. (a) the absolute value of the average potential energy of the SunEarth system (b) the average kinetic energy of the Earth in its orbital motion relative to the Sun (c) the absolute value of the total energy of the SunEarth systemarrow_forwardSuppose the gravitational acceleration at the surface of a certain moon A of Jupiter is 2 m/s2. Moon B has twice the mass and twice the radius of moon A. What is the gravitational acceleration at its surface? Neglect the gravitational acceleration due to Jupiter, (a) 8 m/s2 (b) 4 m/s2 (c) 2 m/s2 (d) 1 m/s2 (e) 0.5 m/s2arrow_forwardA satellite orbits a planet of unknown mass in a circle of radius 2 × 107 m. The magnitude of the gravitational force on the satellite from the planet is F = 80 N. a) What is the kinetic energy of the satellite in this orbit? b) What would F be if the orbit radius were increased to 3 x 107 m?arrow_forward
- A 955-kg satellite orbits the Earth at a constant altitude of 103-km. (a) How much energy must be added to the system to move the satellite into a circular orbit with altitude 199 km? 429 MJ (b) What is the change in the system's kinetic energy? 858 x Is the satellite moving faster or slower when it's orbit is at a higher altitude? MJ (c) What is the change in the system's potential energy? 429 x What is the equation for the gravitational potential energy of a system of two objects? MJ Need Help? Submit Answer Read It Watch Itarrow_forwardA space capsule of mass 445 kg is at rest 2.50 ✕ 107 m from the center of the Earth. When it has fallen 7.00 ✕ 106 m closer to the Earth, find the following. (a) What is the change in the system's gravitational potential energy? (b) Find the speed of the satellite at that point.arrow_forwardThe Moon is a satellite of mass 7.35 x 1022 kg, with an average distance of3.84 x 108 m from the center of Earth.(a) What is the gravitational potential energy of the Moon–Earth system?(b) What is the Moon’s kinetic energy and speed in circular orbit?(c) What is the Moon’s binding energy to Earth?arrow_forward
- A satellite orbits a planet of unknown mass in a circle of radius 2.0 * 10^7 m. The magnitude of the gravitational force on the satellite from the planet is F = 80 N. (a) What is the kinetic energy of the satellite in this orbit? (b) What would F be if the orbit radius were increased to 3.0 * 10^7 m?arrow_forwardA new planet has a mass of 2.0x10^24 kg, a radius of 4.5x10^6m, and no atmosphere. A 100 kg space probe is to be launched vertically from its surface. If the probe is launched with an initial kinetic energy of 6.0 x 10^8 J, the what will be its velocity when it reaches 5.2x10^6m from the center of the new planet?arrow_forwardVA MẸ re TA A VB 2. A satellite of mass m is in an elliptical orbit around the Earth, which has mass Me and radius Re. The orbital radius varies from the smallest value ta at point A to the largest value CR at point B. The satellite has a velocity Va at point A. Assume that the gravitational potential energy Ug = 0 when the satellite is at an infinite distance from the Earth. Present all the answers in terms of G, m, M, RE, CA, UR, and van a. Derive an expression for the gravitational potential energy of the satellite as a function of distance r from the center of the Earth by using an appropriate definite integral. b. Determine the total mechanical energy of the satellite when it is at point A. c. Determine the angular momentum of the satellite with respect to the center of the Earth when it is at point A. d. Determine the velocity of the satellite when it is at point B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University