College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 4CQ
At night, you are farther away from the Sun than during the day. What’s more, the force exerted by the Sun on you is downward into Earth at night and upward into the sky during the day. If you had a sensitive enough bathroom scale, would you appear to weigh more at night than during the day?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
There is one part to this question. I need the answer in kg/m^3. Thank you!!
Suppose Google wants to launch a surveillance satellite to invade the privacy of all their users. They need it to revolve around Earth 10.0 times a day for maximum invasive efficiency. a) Draw a free-body diagram b) What should the radius of its orbit be if we neglect the presence of the Moon? c) How fast is it traveling?
G = 6.67 * 10 ^-11 N*m^2/kg^2
M earth = 5.97 * 10^24 kg
The only way to experience the sensation of having weight is to stand on the surface of a planet or moon.
True
False
2. During a spacewalk, astronauts will generally anchor themselves to various surfaces in zero-gravity by
wearing magnetized boots that cling to metallic surfaces
using specially designed suction cups
employing special grappling hooks
using strap-like foot restraints
Chapter 7 Solutions
College Physics
Ch. 7.1 - A rigid body is rotating counterclockwise about a...Ch. 7.1 - Suppose the change in angular position for each of...Ch. 7.2 - Consider again the pairs of angular positions for...Ch. 7.3 - Andrea and Chuck are riding on a merry-go-round....Ch. 7.3 - When the merry-go-round of Quick Quiz 7.4 is...Ch. 7.4 - A racetrack is constructed such that two arcs of...Ch. 7.4 - An object moves in a circular path with constant...Ch. 7.5 - A ball is falling toward the ground. Which of the...Ch. 7.5 - A planet has two moons with identical mass. Moon 1...Ch. 7.6 - Suppose an asteroid has a semimajor axis of 4 AU....
Ch. 7 - Math Review A circular track has a radius of 125...Ch. 7 - Math Review (a) Convert 47.0 to radians, using the...Ch. 7 - (a) Convert 12.0 rev/min to radians per second....Ch. 7 - A carnival carousel accelerates nonuniformly from...Ch. 7 - Prob. 5WUECh. 7 - A grindstone increases in angular speed uniformly...Ch. 7 - A bicyclist starting at rest produces a constant...Ch. 7 - A car of mass 1 230 kg travels along a circular...Ch. 7 - A man whirls a 0.20-kg piece of lead attached to...Ch. 7 - (a) Find the magnitude of the gravity force...Ch. 7 - What is the gravitational acceleration close to...Ch. 7 - Prob. 12WUECh. 7 - Prob. 13WUECh. 7 - Prob. 14WUECh. 7 - A comet has a period of 76.3 years and moves in an...Ch. 7 - In a race like the Indianapolis 500, a driver...Ch. 7 - If someone told you that astronauts are weightless...Ch. 7 - If a cars wheels are replaced with wheels of...Ch. 7 - At night, you are farther away from the Sun than...Ch. 7 - A pendulum consists of a small object called a bob...Ch. 7 - Because of Earths rotation about its axis, you...Ch. 7 - It has been suggested that rotating cylinders...Ch. 7 - Describe the path of a moving object in the event...Ch. 7 - A pail of water can be whirled in a vertical...Ch. 7 - Use Keplers second law to convince yourself that...Ch. 7 - Is it possible for a car to move in a circular...Ch. 7 - A child is practicing for a BMX race. His speed...Ch. 7 - An object executes circular motion with constant...Ch. 7 - Angular Speed and Angular Acceleration (a) Find...Ch. 7 - A wheel has a radius of 4.1 m. How far (path...Ch. 7 - The tires on a new compact car have a diameter of...Ch. 7 - A potters wheel moves uniformly from rest to an...Ch. 7 - A dentists drill starts from rest. After 3.20 s of...Ch. 7 - A centrifuge in a medical laboratory rotates at an...Ch. 7 - A machine part rotates at an angular speed of 0.06...Ch. 7 - A bicycle is turned upside down while its owner...Ch. 7 - The diameters of the main rotor and tail rotor of...Ch. 7 - The tub of a washer goes into its spin-dry cycle,...Ch. 7 - A car initially traveling at 29.0 m/s undergoes a...Ch. 7 - A 45.0-cm diameter disk rotates with a constant...Ch. 7 - A rotating wheel requires 3.00 s to rotate 37.0...Ch. 7 - An electric motor rotating a workshop grinding...Ch. 7 - A car initially traveling eastward turns north by...Ch. 7 - It has been suggested that rotating cylinders...Ch. 7 - (a) What is the tangential acceleration of a bug...Ch. 7 - An adventurous archeologist (m = 85.0 kg) tries to...Ch. 7 - One end of a cord is fixed and a small 0.500-kg...Ch. 7 - A coin rests 15.0 cm from the center of a...Ch. 7 - A 55.0-kg ice skater is moving at 4.00 m/s when...Ch. 7 - A 40.0-kg child swings in a swing supported by two...Ch. 7 - A certain light truck can go around a flat curve...Ch. 7 - A sample of blood is placed in a centrifuge of...Ch. 7 - A 50.0-kg child stands at the rim of a...Ch. 7 - A space habitat for a long space voyage consists...Ch. 7 - An air puck of mass m1 = 0.25 kg is tied to a...Ch. 7 - Prob. 28PCh. 7 - A woman places her briefcase on the backseat of...Ch. 7 - A pail of water is rotated in a vertical circle of...Ch. 7 - A 40.0-kg child takes a ride on a Ferris wheel...Ch. 7 - Prob. 32PCh. 7 - The average distance separating Earth and the Moon...Ch. 7 - A satellite has a mass of 100 kg and is Located at...Ch. 7 - A coordinate system (in meters) is constructed on...Ch. 7 - Prob. 36PCh. 7 - Objects with masses of 200. kg and 500. kg are...Ch. 7 - Use the data of Table 7.3 to find the point...Ch. 7 - Prob. 39PCh. 7 - Two objects attract each other with a...Ch. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - A satellite of Mars, called Phoebus, has an...Ch. 7 - Prob. 44PCh. 7 - Two satellites are in circular orbits around the...Ch. 7 - Additional Problems A synchronous satellite. which...Ch. 7 - (a) One of the moons of Jupiter, named Io, has an...Ch. 7 - Neutron stars are extremely dense objects that are...Ch. 7 - One method of pitching a softball is called the...Ch. 7 - A digital audio compact disc (CD) carries data...Ch. 7 - An athlete swings a 5.00-kg ball horizontally on...Ch. 7 - A car rounds a banked curve where the radius of...Ch. 7 - Prob. 53APCh. 7 - A 0.400-kg pendulum bob passes through the lowest...Ch. 7 - A car moves at speed v across a bridge made in the...Ch. 7 - Prob. 56APCh. 7 - Because of Earths rotation about its axis, a point...Ch. 7 - Prob. 58APCh. 7 - In Robert Heinleins The Moon Is a Harsh Mistress,...Ch. 7 - A roller coaster travels in a circular path, (a)...Ch. 7 - In a home laundry dryer, a cylindrical tub...Ch. 7 - A model airplane of mass 0.750 kg flies with a...Ch. 7 - A skier starts at rest at the top of a large...Ch. 7 - Casting of molten metal is important in many...Ch. 7 - Suppose a 1 800-kg car passes over a bump in a...Ch. 7 - A stuntman whose mass is 70 kg swings from the end...Ch. 7 - Prob. 67APCh. 7 - The pilot of an airplane executes a constant-speed...Ch. 7 - A piece of mud is initially at point A on the rim...Ch. 7 - A 0.275-kg object is swung in a vertical circular...Ch. 7 - A 4.0-kg object is attached to a vertical rod by...Ch. 7 - The maximum lift force on a bat is proportional to...Ch. 7 - (a) A luggage carousel at an airport has the form...Ch. 7 - A 0.50-kg ball that is tied to the end of a 1.5-m...Ch. 7 - In a popular amusement park ride, a rotating...Ch. 7 - A massless spring of constant k = 78.4 N/m is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You have a super high-tech spacecraft travelling through space that gets caught in a circular orbit around a mysterious object of mass 10 times that of the Sun and a radius of 30km. Your team decides to observe the behavior of this object but due to the heat that it's giving off, it is required that your satellite obtain a circular orbit of at least r = 5.3e5km to be considered 'safe'. You are currently in a circular orbit with r = 4.1e5km. What is the minimum delta-v required to reach the safe orbitarrow_forwardA1arrow_forward#E.2:arrow_forward
- If you could somehow tunnel inside a uniform-density star, would your weight increase or decrease? If, instead, you somehow stood on the surface of a shrinking star, would your weight increase or decrease? Why are your answers different?arrow_forward11:19 O XVI OAD4Na ll Asiacell|ASIACELL homework #1.docx > Resolve F2 into components along the u and v axes, and determine the magnitudes of these components. F, = 150 lb 30 30arrow_forwardAnswer in N and pointing towards or away from sphere. Thank you so mucharrow_forward
- The figure shows a 8-kg sphere attached to the light rigid rod, which rotates in the horizontal plane centered at O. (Figure 1). Figure 1 of 1 0.6 m M = (0.9) N-m %3D 35° F= 40 Narrow_forwardWhy is the force of gravity between two light objects like yourself and your friend not too significant and can be ignored when doing calculations. Do a calculation to show why.arrow_forwardFind the distance between the Earth and the planet Venus at the point of maximum elongation B ?! The distance between the Earth and the Sun is 150mil.km, while the distance between the planet Venus and the Sun is 108mil.km. The maximum elongation angle between Earth and Venus is 45 °.arrow_forward
- A planet has a mass of M1, a radius of R1, and a density of ρ1. A second planet has a mass of M2, a radius of R2, and a density of ρ2. This problem will explore the relationships between the surface gravities (g1 and g2) of the planets depending on the relative sizes of their masses, radii, and densities. a) Assume that planet 2 has X times the mass of planet 1, or M2 = XM1. The densities of both planets are the same. Write an expression for the ratio of the surface gravity of planet 2 to planet 1 in terms of X. b)Suppose now the radius of the second planet is Y times the size of the radius of the first planet, or R2 = YR1. Write an expression for the ratio of the surface gravities, g2/g1 in terms of Y assuming the densities are the same. c) Suppose now M2 = 8M1 and ρ2 = 8ρ1. What is the ratio of g2/g1 now (here we want the actual number; because you are writing a ratio, the number will be unitless)? d) Now suppose R2 = 10R1 and ρ2 = 10ρ1. Find the ratio of g2/g1 (again as a number…arrow_forwardWe will use differential equations to model the orbits and locations of Earth, Mars, and the spacecraft using Newton’s two laws mentioned above. Newton’s second law of motion in vector form is: F^→=ma^→ (1) where F^→ is the force vector in N (Newtons), and a^→ is the acceleration vector in m/s^2,and m is the mass in kg. Newton’s law of gravitation in vector form is: F^→=GMm/lr^→l*r^→/lr^→l where G=6.67x10^-11 m^3/s^2*kg is the universal gravitational constant, M is the mass of the larger object (the Sun), and is 2x10^30 kg, and m is the mass the smaller one (the planets or the spacecraft). The vector r^→ is the vector connecting the Sun to the orbiting objects. Step one ) The motion force in Equation(1), and the gravitational force in Equation(2) are equal. Equate the right hand sides of equations (1) and (2), and cancel the common factor on the left and right sides. Answer: f^→=ma^→ f=Gmm/lr^→l^2 a^→=Gmm/lr^→l^2 x r^→/lr^→l r^→=r^→/lr^→l * Gmm Could you please…arrow_forward(d) 61.0 cm from the center of the sphere kN/Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY