EBK PHYSICS FOR SCIENTISTS & ENGINEERS
5th Edition
ISBN: 9780134296074
Author: GIANCOLI
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 55P
(I) (a) If the kinetic energy of a particle is tripled, by what factor has its speed increased? (b) If the speed of a particle is halved, by what factor does its kinetic energy change?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
Learning Goal:
To understand the meaning and the basic applications of
pV diagrams for an ideal gas.
As you know, the parameters of an ideal gas are
described by the equation
pV = nRT,
where p is the pressure of the gas, V is the volume of
the gas, n is the number of moles, R is the universal gas
constant, and T is the absolute temperature of the gas. It
follows that, for a portion of an ideal gas,
pV
= constant.
T
One can see that, if the amount of gas remains constant,
it is impossible to change just one parameter of the gas:
At least one more parameter would also change. For
instance, if the pressure of the gas is changed, we can
be sure that either the volume or the temperature of the
gas (or, maybe, both!) would also change.
To explore these changes, it is often convenient to draw a
graph showing one parameter as a function of the other.
Although there are many choices of axes, the most
common one is a plot of pressure as a function of
volume: a pV diagram.
In this problem, you…
■ Review | Constants
A cylinder with a movable piston contains 3.75 mol
of N2 gas (assumed to behave like an ideal gas).
Part A
The N2 is heated at constant volume until 1553 J of heat have been added. Calculate the change in
temperature.
ΜΕ ΑΣΦ
AT =
Submit
Request Answer
Part B
?
K
Suppose the same amount of heat is added to the N2, but this time the gas is allowed to expand while
remaining at constant pressure. Calculate the temperature change.
AT =
Π ΑΣΦ
Submit
Request Answer
Provide Feedback
?
K
Next
4. I've assembled the following assortment of point charges (-4 μC, +6 μC, and +3 μC)
into a rectangle, bringing them together from an initial situation where they were all
an infinite distance away from each other. Find the electric potential at point "A"
(marked by the X) and tell me how much work it would require to bring a +10.0 μC
charge to point A if it started an infinite distance away (assume that the other three
charges remains fixed).
300 mm
-4 UC
"A"
0.400 mm
+6 UC
+3 UC
5. It's Friday night, and you've got big party plans. What will you do? Why, make a
capacitor, of course! You use aluminum foil as the plates, and since a standard roll of
aluminum foil is 30.5 cm wide you make the plates of your capacitor each 30.5 cm by
30.5 cm. You separate the plates with regular paper, which has a thickness of 0.125
mm and a dielectric constant of 3.7. What is the capacitance of your capacitor? If
you connect it to a 12 V battery, how much charge is stored on either plate?
=
Chapter 7 Solutions
EBK PHYSICS FOR SCIENTISTS & ENGINEERS
Ch. 7.1 - A box is dragged a distance d across a floor by a...Ch. 7.1 - Return to the Chapter-Opening Question, page 163,...Ch. 7.4 - (a) Make a guess: will the work needed to...Ch. 7.4 - Can kinetic energy ever be negative?Ch. 7.4 - Prob. 1EECh. 7 - In what ways is the word work as used in everyday...Ch. 7 - A woman swimming upstream is not moving with...Ch. 7 - Can a centripetal force ever do work on an object?...Ch. 7 - Why is it tiring to push hard against a solid wall...Ch. 7 - Does the scalar product of two vectors depend on...
Ch. 7 - Can a dot product ever he negative? If yes, under...Ch. 7 - Prob. 7QCh. 7 - Does the dot product of two vectors have direction...Ch. 7 - Can the normal force on an object ever do work?...Ch. 7 - You have two springs that are identical except...Ch. 7 - Prob. 11QCh. 7 - In Example 710, it was stated that the block...Ch. 7 - Does the net work done on a particle depend on the...Ch. 7 - Prob. 2MCQCh. 7 - Prob. 3MCQCh. 7 - Prob. 5MCQCh. 7 - Prob. 7MCQCh. 7 - Prob. 8MCQCh. 7 - Prob. 9MCQCh. 7 - Prob. 10MCQCh. 7 - Prob. 12MCQCh. 7 - Prob. 13MCQCh. 7 - Prob. 14MCQCh. 7 - (I) How much work is done by the gravitational...Ch. 7 - (I) How high will a 1.85-kg rock go if thrown...Ch. 7 - (I) A 75.0-kg firefighter climbs a flight of...Ch. 7 - (I) A hammerhead with a mass of 2.0 kg is allowed...Ch. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - (II) Estimate the work you do to mow a lawn 10 m...Ch. 7 - Prob. 10PCh. 7 - (II) A lever such as that shown in Fig. 720 can be...Ch. 7 - Prob. 12PCh. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - Prob. 16PCh. 7 - Prob. 17PCh. 7 - Prob. 18PCh. 7 - (I) For any vector V=Vxi+Vyj+Vzk show that...Ch. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - Prob. 23PCh. 7 - (II) A constant force F=(2.0i+4.0j)N acts on an...Ch. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - (II) Show that if two nonparallel vectors have the...Ch. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Prob. 32PCh. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - (II) If the hill in Example 72 (Fig. 74) was not...Ch. 7 - (II) The net force exerted on a particle acts in...Ch. 7 - Prob. 40PCh. 7 - (II) The force on a particle, acting along the x...Ch. 7 - Prob. 42PCh. 7 - Prob. 43PCh. 7 - (II) At the top of a pole vault, and athlete...Ch. 7 - Prob. 45PCh. 7 - Prob. 46PCh. 7 - (II) If it requires 5.0 J of work to stretch a...Ch. 7 - (II) An object, moving along the circumference of...Ch. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - (III) A 3.0-m-long steel chain is stretched out...Ch. 7 - (I) At room temperature, an oxygen molecule, with...Ch. 7 - (I) (a) If the kinetic energy of a particle is...Ch. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - (II) An 85-g arrow is fired from a bow whose...Ch. 7 - (II) If the speed of a car is increased by 50%, by...Ch. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - (II) (a) How much work is done by the horizontal...Ch. 7 - Prob. 67PCh. 7 - Prob. 68PCh. 7 - (II) A train is moving along a track with constant...Ch. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - Prob. 73PCh. 7 - Prob. 74GPCh. 7 - Prob. 75GPCh. 7 - Prob. 76GPCh. 7 - Prob. 77GPCh. 7 - Prob. 78GPCh. 7 - A varying force is given by F = Aekx, where x is...Ch. 7 - Prob. 80GPCh. 7 - A force F=(10.0i+9.0j+12.0k)kNacts on a small...Ch. 7 - Prob. 82GPCh. 7 - Prob. 83GPCh. 7 - Prob. 84GPCh. 7 - (III) We usually neglect the mass of a spring if...Ch. 7 - Prob. 86GPCh. 7 - Prob. 87GPCh. 7 - Prob. 88GPCh. 7 - Prob. 89GPCh. 7 - Prob. 90GPCh. 7 - Prob. 91GPCh. 7 - Assume a cyclist of weight mg can exert a force on...Ch. 7 - A car passenger buckles himself in with a seat...Ch. 7 - A simple pendulum consists of a small object of...Ch. 7 - Prob. 95GPCh. 7 - A small mass m hangs at rest from a vertical rope...Ch. 7 - Prob. 97GPCh. 7 - Prob. 98GPCh. 7 - Stretchable ropes ate used to safely arrest the...Ch. 7 - Prob. 100GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is meant by high-throughput in culturing microorganisms? How has it benefited microbiology?
Brock Biology of Microorganisms (15th Edition)
Choose the best answer to each of the following. Explain your reasoning. 5.What kind of new particles are produ...
Cosmic Perspective Fundamentals
1.14 Classify each of the following as a pure substance or a mixture. If a mixture, indicate whether it is homo...
Chemistry: The Central Science (14th Edition)
Which element is a maingroup metal with an even atomic number? a. K b. Ca c. Cr d. Se
Introductory Chemistry (6th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Which compound is more easily decarboxylated?
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Learning Goal: To understand the meaning and the basic applications of pV diagrams for an ideal gas. As you know, the parameters of an ideal gas are described by the equation pV = nRT, where p is the pressure of the gas, V is the volume of the gas, n is the number of moles, R is the universal gas constant, and T is the absolute temperature of the gas. It follows that, for a portion of an ideal gas, PV T = constant. One can see that, if the amount of gas remains constant, it is impossible to change just one parameter of the gas: At least one more parameter would also change. For instance, if the pressure of the gas is changed, we can be sure that either the volume or the temperature of the gas (or, maybe, both!) would also change. To explore these changes, it is often convenient to draw a graph showing one parameter as a function of the other. Although there are many choices of axes, the most common one is a plot of pressure as a function of volume: a pV diagram. In this problem, you…arrow_forwardA-e pleasearrow_forwardTwo moles of carbon monoxide (CO) start at a pressure of 1.4 atm and a volume of 35 liters. The gas is then compressed adiabatically to 1/3 this volume. Assume that the gas may be treated as ideal. Part A What is the change in the internal energy of the gas? Express your answer using two significant figures. ΕΠΙ ΑΣΦ AU = Submit Request Answer Part B Does the internal energy increase or decrease? internal energy increases internal energy decreases Submit Request Answer Part C ? J Does the temperature of the gas increase or decrease during this process? temperature of the gas increases temperature of the gas decreases Submit Request Answerarrow_forward
- Your answer is partially correct. Two small objects, A and B, are fixed in place and separated by 2.98 cm in a vacuum. Object A has a charge of +0.776 μC, and object B has a charge of -0.776 μC. How many electrons must be removed from A and put onto B to make the electrostatic force that acts on each object an attractive force whose magnitude is 12.4 N? e (mea is the es a co le E o ussian Number Tevtheel ed Media ! Units No units → answe Tr2Earrow_forward4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forward4 Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad, the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec². What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle by observing a right triangle. (20 pts) Ꮎ 2 m Figure 3: Particle pushed by rod along vertical path.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079137/9781305079137_smallCoverImage.gif)
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY