
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
2nd Edition
ISBN: 8220100552236
Author: ZUMDAHL
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 55E
A 5.00-g sample of aluminum pellets (specific heat capacity = 0.89 J/ºC • g) and a 10.00-g sample of iron pellets (specific heat capacity = 0.45 J/ºC • g) are heated to 100.0ºC. The mixture of hot iron and aluminum is then dropped into 97.3 g water at 22.0ºC. Calculate the final temperature of the metal and water mixture, assuming no heat loss to the surroundings.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Can you please help me solve these homework questions
An einstein is the amount of energy needed to dissociate 1 mole of a substance. If we have 0.58 moles, do we need 0.58 einsteins to dissociate that substance?
If the energy absorbed per mole of gas is 480 kJ mol-1, indicate the number of Einsteins per mole.Data: Energy of each photon: 0.7835x10-18 J.
Chapter 7 Solutions
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
Ch. 7 - Define the following terms: potential energy,...Ch. 7 - Consider the following potential energy diagrams...Ch. 7 - What is the first law of thermodynamics? How can a...Ch. 7 - When a gas expands, what is the sign of w? Why?...Ch. 7 - Prob. 5RQCh. 7 - High-quality audio amplifiers generate large...Ch. 7 - Explain how calorimetry works to calculate H or E...Ch. 7 - What is Hesss law? When a reaction is reversed,...Ch. 7 - Define the standard enthalpy of formation. What...Ch. 7 - Prob. 1ALQ
Ch. 7 - Prob. 2ALQCh. 7 - A fire is started in a fireplace by striking a...Ch. 7 - Liquid water turns to ice. Is this process...Ch. 7 - Prob. 5ALQCh. 7 - Prob. 6ALQCh. 7 - Consider 5.5 L of a gas at a pressure of 3.0 atm...Ch. 7 - Explain why oceanfront areas generally have...Ch. 7 - Hesss law is really just another statement of the...Ch. 7 - Prob. 10ALQCh. 7 - Prob. 11QCh. 7 - Prob. 12QCh. 7 - Assuming gasoline is pure C8H18(l), predict the...Ch. 7 - Prob. 14QCh. 7 - The enthalpy change for the reaction...Ch. 7 - For the reaction HgO(s)Hg(l)+12O2(g),H=+90.7KJ: a....Ch. 7 - Prob. 17QCh. 7 - The enthalpy change for a reaction is a state...Ch. 7 - Standard enthalpies of formation are relative...Ch. 7 - The combustion of methane can be represented as...Ch. 7 - Prob. 21QCh. 7 - Prob. 22QCh. 7 - Prob. 23QCh. 7 - Prob. 24QCh. 7 - Prob. 25ECh. 7 - Prob. 26ECh. 7 - Consider the following diagram when answering the...Ch. 7 - Consider the accompanying diagram. Ball A is...Ch. 7 - A gas absorbs 45 kJ of heat and does 29 kJ of...Ch. 7 - A system releases 125 kJ of heat while 104 kJ of...Ch. 7 - Calculate E for each of the following. a. q = 47...Ch. 7 - A system undergoes a process consisting of the...Ch. 7 - If the internal energy of a thermodynamic system...Ch. 7 - Calculate the internal energy change for each of...Ch. 7 - A sample of an ideal gas at 15.0 atm and 10.0 L is...Ch. 7 - Prob. 36ECh. 7 - Consider a mixture of air and gasoline vapor in a...Ch. 7 - As a system increases in volume, it absorbs 52.5 J...Ch. 7 - A balloon filled with 39.1 moles of helium has a...Ch. 7 - Prob. 40ECh. 7 - One of the components of polluted air is NO. It is...Ch. 7 - Prob. 42ECh. 7 - Are the following processes exothermic or...Ch. 7 - Are the following processes exothermic or...Ch. 7 - The overall reaction in a commercial heat pack can...Ch. 7 - Consider the following reaction:...Ch. 7 - Consider the combustion of propane:...Ch. 7 - Consider the following reaction:...Ch. 7 - Prob. 49ECh. 7 - The specific heat capacity of silver is 0.24 J/Cg....Ch. 7 - A 500-g sample of one of the substances listed in...Ch. 7 - Prob. 52ECh. 7 - A 30.0-g sample of water at 280. K is mixed with...Ch. 7 - A biology experiment requires the preparation of a...Ch. 7 - A 5.00-g sample of aluminum pellets (specific heat...Ch. 7 - Hydrogen gives off 120. J/g of energy when burned...Ch. 7 - Prob. 57ECh. 7 - A 110.-g sample of copper (specific heat capacity...Ch. 7 - In a coffee-cup calorimeter, 50.0 mL of 0.100 M...Ch. 7 - In a coffee-cup calorimeter, 100.0 mL of 1.0 M...Ch. 7 - A coffee-cup calorimeter initially contains 125 g...Ch. 7 - In a coffee-cup calorimeter, 1.60 g NH4NO3 is...Ch. 7 - Consider the dissolution of CaCl2:...Ch. 7 - Consider the reaction...Ch. 7 - The heat capacity of a bomb calorimeter was...Ch. 7 - The combustion of 0.1584 g benzoic acid increases...Ch. 7 - The enthalpy of combustion of solid carbon to form...Ch. 7 - Combustion reactions involve reacting a substance...Ch. 7 - Given the following data calculate H for the...Ch. 7 - Given the following data...Ch. 7 - Prob. 71ECh. 7 - Calculate H for the reaction...Ch. 7 - Given the following data...Ch. 7 - Given the following data...Ch. 7 - Give the definition of the standard enthalpy of...Ch. 7 - Write reactions for which the enthalpy change will...Ch. 7 - Prob. 77ECh. 7 - Use the values of Hf in Appendix 4 to calculate H...Ch. 7 - The Ostwald process for the commercial production...Ch. 7 - Calculate H for each of the following reactions...Ch. 7 - The reusable booster rockets of the space shuttle...Ch. 7 - The space shuttle Orbiter utilizes the oxidation...Ch. 7 - Consider the reaction...Ch. 7 - The standard enthalpy of combustion of ethene gas,...Ch. 7 - Water gas is produced from the reaction of steam...Ch. 7 - Prob. 86ECh. 7 - Prob. 87ECh. 7 - Prob. 88ECh. 7 - Some automobiles and buses have been equipped to...Ch. 7 - The complete combustion of acetylene, C2H2(g),...Ch. 7 - Prob. 91AECh. 7 - One way to lose weight is to exercise! Walking...Ch. 7 - Three gas-phase reactions were run in a...Ch. 7 - Nitrogen gas reacts with hydrogen gas to form...Ch. 7 - Combustion of table sugar produces CO2(g) and H2O(...Ch. 7 - Prob. 96AECh. 7 - Consider the following cyclic process carried out...Ch. 7 - Calculate H for the reaction...Ch. 7 - The enthalpy of neutralization for the reaction of...Ch. 7 - Prob. 100AECh. 7 - If a student performs an endothermic reaction in a...Ch. 7 - In a bomb calorimeter, the reaction vessel is...Ch. 7 - The bomb calorimeter in Exercise 102 is filled...Ch. 7 - Prob. 104AECh. 7 - Consider the following equations:...Ch. 7 - Prob. 106AECh. 7 - At 298 K, the standard enthalpies of formation for...Ch. 7 - Prob. 108AECh. 7 - A sample of nickel is heated to 99.8C and placed...Ch. 7 - Quinone is an important type of molecule that is...Ch. 7 - Calculate H for each of the following reactions,...Ch. 7 - Compare your answers from parts a and b of...Ch. 7 - Compare your answer from Exercise 72 of Chapter 3...Ch. 7 - Consider a balloon filled with helium at the...Ch. 7 - Prob. 115CWPCh. 7 - Prob. 116CWPCh. 7 - Prob. 117CWPCh. 7 - A swimming pool, 10.0 m by 4.0 m, is filled with...Ch. 7 - Prob. 119CWPCh. 7 - Calculate H for the reaction...Ch. 7 - Which of the following substances have an enthalpy...Ch. 7 - Consider 2.00 moles of an ideal gas that are taken...Ch. 7 - For the process H2O(l)H2O(g) at 298 K and 1.0 atm,...Ch. 7 - The sun supplies energy at a rate of about 1.0...Ch. 7 - Prob. 125CPCh. 7 - The standard enthalpies of formation for S(g),...Ch. 7 - Use the following standard enthalpies of formation...Ch. 7 - The standard enthalpy of formation for N2H4(g) is...Ch. 7 - The standard enthalpy of formation for NO(g) is...Ch. 7 - A piece of chocolate cake contains about 400...Ch. 7 - You have a l.00-mole sample of water at 30.C and...Ch. 7 - A 500.0-g sample of an element at 195C is dropped...Ch. 7 - A cubic piece of uranium metal (specific heat...Ch. 7 - On Easter Sunday, April 3, 1983, nitric acid...Ch. 7 - Using data from Chapter 2, calculate the change in...Ch. 7 - In Exercise 89 in Chapter 3, the Lewis structures...Ch. 7 - A gaseous hydrocarbon reacts completely with...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- If the energy absorbed per mole of gas is 480 kJ mol-1, indicate the number of Einsteins per mole.arrow_forwardThe quantum yield of the photochemical decay of HI is 2. Calculating the moles of HI per kJ of radiant energy can be decayed knowing that the energy absorbed per mole of photons is 490 kJ.arrow_forwardThe quantum yield of the photochemical decay of HI is 2. Calculate the number of Einsteins absorbed per mole knowing that the energy absorbed per mole of photons is 490 kJ.arrow_forward
- The quantum yield of the photochemical decay of HI is 2. How many moles of HI per kJ of radiant energy can be decayed knowing that the energy absorbed per mole of photons is 490 kJ.arrow_forwardIf the energy absorbed per mole of photons is 450 kJ, the number of Einsteins absorbed per 1 mole.arrow_forwardWhen propionic aldehyde in vapor form at 200 mmHg and 30°C is irradiated with radiation of wavelength 302 nm, the quantum yield with respect to the formation of CO is 0.54. If the intensity of the incident radiation is 1.5x10-3 W, find the rate of formation of CO.arrow_forward
- If the dissociation energy of one mole of O2 is 5.17 eV, determine the wavelength that must be used to dissociate it with electromagnetic radiation. Indicate how many Einstein's of this radiation are needed to dissociate 1 liter of O2 at 25°C and 1 atm of pressure.Data: 1 eV = 96485 kJ mol-1; R = 0.082 atm L K-1; c = 2.998x108 m s-1; h = 6.626x10-34 J s; NA = 6.022x 1023 mol-1arrow_forwardIndicate the number of Einsteins that are equivalent to 550 kJ mol⁻¹ of absorbed energy (wavelength 475 nm).arrow_forwardIndicate the number of einsteins that are equivalent to 550 kJ mol⁻¹ of absorbed energy?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co

Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY