Concept explainers
Obtain the inductor current for both t < 0 and t > 0 in each of the circuits in Fig. 7.120.
(a)
Calculate the value of inductor current
Answer to Problem 54P
The value of inductor current
Explanation of Solution
Given data:
Refer to Figure 7.120 in the textbook.
The value of inductance L in Figure 7.120(a) is
Formula used:
Write the general expression to find the complete response of current for the RL circuit.
Here,
Write the expression to calculate the time constant for the RL circuit.
Here,
L is the inductance of the inductor.
Calculation:
Figure 1 shows the modified circuit diagram when
In Figure 1, the switch is kept in open position for all
Therefore, the inductor current
Figure 2 shows the modified circuit diagram when the switch is kept in close position for all
Apply Kirchhoff’s current law at node a.
Rearrange the equation as follows,
The final inductor current
Substitute
Figure 3 shows the equivalent resistance at the inductor terminal.
In Figure 3, the equivalent resistance is calculated as follows.
Substitute
Substitute the units
Substitute
Therefore, the inductor current
Conclusion:
Thus, the value of inductor current
(b)
Calculate the value of inductor current
Answer to Problem 54P
The value of inductor current
Explanation of Solution
Given data:
Refer to Figure 7.120 in the textbook.
The value of inductance L in Figure 7.120(b) is
Calculation:
Figure 4 shows the modified circuit diagram when switch is kept open for a long time at
In Figure 4,
Rearrange the equation as follows,
Therefore, the inductor current
Figure 5 shows the redrawn circuit when switch is kept in closed position at
In Figure 5, apply Kirchhoff’s current law at node v.
Rearrange the equation as follows,
The final inductor current
Substitute
Figure 6 shows the equivalent resistance at the inductor terminal.
In Figure 6, the equivalent resistance is calculated as follows.
Substitute
Substitute the units
Substitute
Therefore, the inductor current
Conclusion:
Thus, the value of inductor current
Want to see more full solutions like this?
Chapter 7 Solutions
EE 98: Fundamentals of Electrical Circuits - With Connect Access
- Don't use ai to answer I will report you answerarrow_forwardconpute the thevenin equivalent between the terminals a and b Veq and Zeq note that the voltage source has 5e^j0 V the other values if not clear are -8j 8 20 and 5ohmsarrow_forward-calculate theoretical voltage and current values in Figure 1.3 and record them in Table 1.1. Calculate-all- voltage and current values as peak-to-peak. Table 1.1: Calculated Values of RC-Circuit ZTotale in (p-to-p)¤ VR-(p-to-p)¤ Vc-(p-to-p)¤ R(2) X-(2) mag (mA) angled mag (V) angled mag-(V) angle Freq. (Hz) X (N)- ρα ρα 500x 4000x ρα ρα ρα ρα ρα ρα ρα ραarrow_forward
- Q1 .Determine the model of the following system using Mason's rulearrow_forwardA three-phase delta-connected load, each phase of which has an inductive reactance of 40 Ω and a resistance of 25 Ω, is fed from the secondary of a three-phase star-connected transformer which has a phase voltage of 230 V. Draw the circuit diagram of the system and calculate: (a) the current in each phase of the load; (b) the p.d. across each phase of the load; (c) the current in the transformer secondary windings; (d) the total active power taken from the supply and its power factor. ANS= 8.8 A, 416 V, 15.25 A, 5810 Warrow_forward"I need something clear written by hand with steps." Find Laplace transform and the corresponding ROC for x(t) = e−3sin(2t) u(t)dtarrow_forward
- Three similar coils, connected in star, take a total power of 1.5 kW, at a power factor of 0.2, from a three-phase, 400 V, 50 Hz supply. Calculate: (a) the resistance and inductance of each coil; (b) the line currents if one of the coils is short-circuited.arrow_forward(a) Three 20 µF capacitors are star-connected across a 400 V, 50 Hz, three-phase, three-wire supply. Calculate the current in each line. (b) If one of the capacitors is short-circuited, calculate the line cur rents. (c) If one of the capacitors is open-circuited, calculate: the line currents and the p.d. across each of the other two capacitors. ANS: 1.525 A; 2.64 A, 2.64 A, 4.57 A; 1.32 A, 1.32 A, 0; 210 Varrow_forwardExplain the advantages of three-phase supply for distribution purposes. (b) Assuming the relationship between the line and phase values of currents and voltages, show that the active power input to a three-phase balanced load is √3VI cos φ, where V and I are line quantities. (c) Three similar inductors, each of resistance 10 Ω and inductance 0.019 H, are delta-connected to a three-phase, 400 V, 50 Hz sinusoidal supply. Calcu late: the value of the line current; the power factor and the active power input to the circuit. ANS: 59.5 A, 0.858 lag, 35.5 kWarrow_forward
- not use ai pleasearrow_forwardA three-phase, 400 V, star-connected motor has an output of 50 kW, with an efficiency of 90 per cent and a power factor of 0.85. Calculate the line current. Sketch a phasor diagram showing the voltages and currents. If the motor windings were connected in mesh, what would be the correct voltage of a three phase supply suitable for the motor? ANS: 90.8 A, 240 Varrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,