Concept explainers
For the circuit in Fig. 7.100,
v = 90e−50t V
and
i = 30e−50t A, t > 0
- (a) Find L and R.
- (b) Determine the time constant.
- (c) Calculate the initial energy in the inductor.
- (d) What fraction of the initial energy is dissipated in 10 ms?
Figure 7.100
(a)
Find the value of resistance R and inductance L in the Figure 7.100.
Answer to Problem 20P
The value of resistance R in the circuit is
Explanation of Solution
Given data:
The voltage
The current
Formula used:
Write the expression to find the voltage across the inductor for the given circuit.
Here,
L is the inductance of the inductor.
Write the expression to find the time constant for RL circuit.
Here,
R is the resistance of the resistor.
Write the general expression to find the voltage response in the RL Circuit.
Here,
Calculation:
Substitute
Rearrange the equation as follows,
Convert the unit H to mH.
Compare the given voltage
Rearrange the equation (4) to find the time constant
Substitute
Rearrange the equation (5) to find the resistance R in ohms.
Conclusion:
Thus, the value of resistance R in the circuit is
(b)
Find the time constant
Answer to Problem 20P
The time constant
Explanation of Solution
Given data:
Refer to part (a).
The value of resistance R is
The value of inductance L is
Calculation:
Substitute
Substitute the units
Convert the unit s to ms.
Conclusion:
Thus, the time constant
(c)
Find the value of initial energy stored in the inductor.
Answer to Problem 20P
The value of initial energy stored in the inductor is
Explanation of Solution
Given data:
Refer to part (a).
The value of inductance L is
Formula used:
Write the expression to find the energy stored in the inductor.
Here,
Calculation:
The given current is,
The initial current in the RL circuit at
Substitute
Conclusion:
Thus, the value of initial energy stored in the inductor is
(d)
Find the fraction of the energy dissipated in the first 10 ms.
Answer to Problem 20P
The fraction of the energy dissipated in the first 10 ms is
Explanation of Solution
Given data:
Refer to part (c).
The value of initial energy w stored in the inductor is
Formula used:
Write the expression to find the energy stored in the inductor.
Calculation:
The given current is,
The current in the RL circuit at
Substitute
The fraction of the energy dissipated in the first 10 ms is calculated as follows.
Substitute
Conclusion:
Thus, the fraction of the energy dissipated in the first 10 ms is
Want to see more full solutions like this?
Chapter 7 Solutions
EE 98: Fundamentals of Electrical Circuits - With Connect Access
- I need solutions to this project question, expertly solve darrow_forwardHANDWRITTEN SOLUTION NOT USING AIUsing nodal analysis, find V_o in the networkarrow_forwardYour objective is to obtain a Th´evenin equivalent for thecircuit shown in Fig. P7.46, given that is(t) = 3cos 4×104t A. Tothat end:(a) Transform the circuit to the phasor domain.(b) Apply the source-transformation technique to obtain theTh´evenin equivalent circuit at terminals (a,b). (c) Transform the phasor-domain Th´evenin circuit back to thetime domain.arrow_forward
- 7.48 Determine the Thévenin equivalent of the circuit in Fig. P7.48 at terminals (a,b), given that Us(t) 12 cos 2500t V, = is(t)=0.5 cos (2500t - 30°) A.arrow_forwardPower system studies on an existing system have indicated that 2400 MW are to be transmitted for a distance of 400 Km. The voltage levels being considered include 345 kV, 500 kV, and 765 kV. For a preliminary design based on the practical line loadability, you may assume the following surge impedances 345 kV Zc=320 2 500 kV Zc=290 765 kV Zc=265 The line wavelength may be assumed to be 5000 km. The practical line loadability may be based on a load angle of 35º. Assume |Vs| = 1.0 pu and |Vr|=0.9 pu. a) Determine the number of three-phase transmission circuits required for each voltage level. Each transmission tower may have up to two circuits. To limit the corona loss, all 500-kV lines must have at least two conductors per phase, and all 765-kV lines must have at least four conductors per phase. b) The bundle spacing is 45 cm. The conductor size should be such that the line would be capable of carrying current corresponding to at least 5000 MVA. Determine the number of conductors in the…arrow_forwardGiven handwritten correct solution do not use AIarrow_forward
- 2. If the Ce value in Fig. 11-7 is changed to 0.1 μF, is the output still a PWM waveform? Explain. C₁ 0.014 C₂ 100 R₁ 300 HF 8 Vcc 4 reset output 3 discharge 7 2 trigger 5 control voltage U₁ LM555 6 threshold GND ODUCT R₂ 10k ww Bo +12 V 22 R3 1k VR 5k www Re 300 C5 100 ww 8 Vcc 4 reset output 3 2 trigger 7 discharge ли R7 10k PWM Output threshold C6 -0.014 5 control voltage GND Rs 2k CA U2 LM555 1 100μ C3 0.01 Audio lutput Fig. 11-7 Pulse width modulatorarrow_forwardPROD 1. What is the function of VR, in Figs. 11-2 and 11-7. DL RO 0.014 +12V R₁ 1k ww Vin(+) 6 C₁ 0.1μ Audio input HH VRI Vin(-) 4 U1 HА741 10k ww R2 10k UCTS 0.01 μ -12V PWM output Fig. 11-2 The pulse width modulator based on μA741 +12 V ° C₂ 100 R₁ 300 Re 300 Cs 100 ww ww Vcc 4 reset 2 trigger 5 control voltage U₁ LM555 GND www R₂ T₁ 10k output 3 discharge Z Voc output 3 reset VR₁ 5k 2 trigger 7 discharge Ra 1k threshold 6 control 6 threshold voltage GND Rs CA U2 LM555 1 2k 100 Ca 0.01 Audio lutput www R7 10k O PWM C6 -0.014 Fig. 11-7 Pulse width modulator 11/9 Outputarrow_forwardPRO3. In a point of view of voltage polarity, what is the difference between the output PWM signals in experiments 11-1 and 11-2? H ICTS Experiment 11-1.. Pulse Width Modulator Using uA741 Experiment 11-2 Pulse Width Modulator Using LM555arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,