bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7, Problem 52PQ

(a)

To determine

The rate of change of gravitational force F(r) with respect to the distance of separation r between the masses.

(a)

Expert Solution
Check Mark

Answer to Problem 52PQ

The rate of change of gravitational force F(r) with respect to the distance of separation r between the masses is dFdr=2GMmr3_.

Explanation of Solution

Write the expression for the gravitational force between two masses.

  F(r)=GMmr2 (I)

Here, F(r) is the gravitational force, G is the gravitational constant, M is the mass of one object, m is the mass of the other object, and r is the distance of separation between the masses.

Differentiate equation (I) with respect to r to find rate of change of gravitational force F(r) with respect to the distance of separation r between the masses.

  dFdr=ddr(GMmr2)=(GMm)ddr(1r2)=GMm(2r3)=2GMmr3 (II)

Conclusion:

Therefore, the rate of change of gravitational force F(r) with respect to the distance of separation r between the masses is dFdr=2GMmr3_.

(b)

To determine

The value of dF(r)/dr between Sun and Earth, and that between Earth and Moon.

(b)

Expert Solution
Check Mark

Answer to Problem 52PQ

For the Sun-Earth system dFdr=4.7×1011N/m_, and for Earth-Moon system dFdr=10.8×1011N/m_.

Explanation of Solution

The distance between the Sun and Earth is 1.5×1011m, the mass of Sun is 2.0×1030kg, the mass of Earth is 6.0×1024kg, the distance between Earth and Moon is 3.8×108m, and the mass of moon is 7.4×1022kg.

Equation (II) gives the expression for rate of change of gravitational force with respect to the distance of separation.

  dFdr=2GMmr3

Conclusion:

Substitute 6.67×1011Nm2/kg2 for G, 2.0×1030kg for M, 6.0×1024kg for m, and 1.5×1011m for r in equation (II) to find dF(r)/dr for Sun-Earth system.

  (dFdr)Sun-Earth=2(6.67×1011Nm2/kg2)(2.0×1030kg)(6.0×1024kg)(1.5×1011m)3=4.7×1011N/m

Substitute 6.67×1011Nm2/kg2 for G, 6.0×1024kg for M, 7.4×1022kg for m, and 3.8×108m for r in equation (II) to find dF(r)/dr for Earth-Moon system.

  (dFdr)Earth-Moon=2(6.67×1011Nm2/kg2)(6.0×1024kg)(7.4×1022kg)(3.8×108m)3=10.8×1011N/m

Therefore, for the Sun-Earth system dFdr=4.7×1011N/m_, and for Earth-Moon system dFdr=10.8×1011N/m_.

(c)

To determine

When the Earth-Moon distance remains the same, but the Earth is moved closer to the Sun, whether there is any point where dF(r)/dr for the two forces has same value.

(c)

Expert Solution
Check Mark

Answer to Problem 52PQ

When the Earth-Moon distance remains the same, but the Earth is moved closer to the Sun, there is a point r=1.1×1011m_, where dF(r)/dr for the two forces has same value.

Explanation of Solution

Given that the value of dF(r)/dr is 10.8×1011N/m

The position corresponding to the condition when the Earth is moved closer to the Sun, but dF(r)/dr for the two forces has same value can be computed by solving equation (II) for r.

  r=2GMm(dFdr)3 (III)

Conclusion:

Substitute 6.67×1011Nm2/kg2 for G, 2.0×1030kg for M, 6.0×1024kg for m, 1.5×1011m for r, and 10.8×1011N/m for dF(r)/dr in equation (III) to find r.

  r=2(6.67×1011Nm2/kg2)(2.0×1030kg)(6.0×1024kg)(10.8×1011N/m)3=1.1×1011m

Therefore, when the Earth-Moon distance remains the same, but the Earth is moved closer to the Sun, there is a point r=1.1×1011m_, where dF(r)/dr for the two forces has same value.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cm
No chatgpt pls will upvote
13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…

Chapter 7 Solutions

Webassign Printed Access Card For Katz's Physics For Scientists And Engineers: Foundations And Connections, 1st Edition, Single-term

Ch. 7 - Io and Europa are two of Jupiters many moons. The...Ch. 7 - Model the Moons orbit around the Earth as an...Ch. 7 - Prob. 8PQCh. 7 - Prob. 9PQCh. 7 - Prob. 10PQCh. 7 - Prob. 11PQCh. 7 - Prob. 12PQCh. 7 - A massive black hole is believed to exist at the...Ch. 7 - Since 1995, hundreds of extrasolar planets have...Ch. 7 - When Sedna was discovered in 2003, it was the most...Ch. 7 - Prob. 16PQCh. 7 - The mass of the Earth is approximately 5.98 1024...Ch. 7 - Prob. 18PQCh. 7 - Prob. 19PQCh. 7 - A black hole is an object with mass, but no...Ch. 7 - Prob. 21PQCh. 7 - Prob. 22PQCh. 7 - The Lunar Reconnaissance Orbiter (LRO), with mass...Ch. 7 - A Suppose a planet with mass m is orbiting star...Ch. 7 - Prob. 25PQCh. 7 - Three billiard balls, the two-ball, the four-ball,...Ch. 7 - Saturns ring system forms a relatively thin,...Ch. 7 - Prob. 28PQCh. 7 - Find the magnitude of the Suns gravitational force...Ch. 7 - Prob. 30PQCh. 7 - Prob. 31PQCh. 7 - Prob. 32PQCh. 7 - Prob. 33PQCh. 7 - Prob. 34PQCh. 7 - Prob. 35PQCh. 7 - In your own words, describe the difference between...Ch. 7 - The Sun has a mass of approximately 1.99 1030 kg....Ch. 7 - Prob. 38PQCh. 7 - Prob. 39PQCh. 7 - Prob. 40PQCh. 7 - Three billiard balls, the two-ball, the four-ball,...Ch. 7 - Prob. 42PQCh. 7 - Prob. 43PQCh. 7 - Prob. 44PQCh. 7 - Figure P7.45 shows a picture of American astronaut...Ch. 7 - Prob. 46PQCh. 7 - Prob. 47PQCh. 7 - Prob. 48PQCh. 7 - Prob. 49PQCh. 7 - Prob. 50PQCh. 7 - The International Space Station (ISS) experiences...Ch. 7 - Prob. 52PQCh. 7 - Two black holes (the remains of exploded stars),...Ch. 7 - Prob. 54PQCh. 7 - Prob. 55PQCh. 7 - Consider the Earth and the Moon as a two-particle...Ch. 7 - Prob. 57PQCh. 7 - Consider the Earth and the Moon as a two-particle...Ch. 7 - Prob. 59PQCh. 7 - You are a planetary scientist studying the...Ch. 7 - Prob. 61PQCh. 7 - Prob. 62PQCh. 7 - Planetary orbits are often approximated as uniform...Ch. 7 - Prob. 64PQCh. 7 - Prob. 65PQCh. 7 - Prob. 66PQCh. 7 - Prob. 67PQCh. 7 - Prob. 68PQCh. 7 - Prob. 69PQCh. 7 - Prob. 70PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY