Bundle: Automotive Technology: A Systems Approach, 6th + LMS Integrated for MindTap Auto Trades Printed Access Card
6th Edition
ISBN: 9781305366749
Author: Jack Erjavec, Rob Thompson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 4RQ
Which of the following statements about latex and nitrile gloves is not true?
- The gloves offer protection against cuts.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
LATIHAN
8.5-4. Concentration of NaOH Solution in Triple-Effect Evaporator. A forced-circulation
triple-effect evaporator using forward feed is to be used to concentrate a 10 wt
% NaOH solution entering at 37.8°C to 50%. The steam used enters at 58.6 kPa
gage. The absolute pressure in the vapor space of the third effect is 6.76 kPa.
The feed rate is 13 608 kg/h. The heat-transfer coefficients are U₁ = 6246, U2
= 3407, and U3 = 2271 W/m² K. All effects have the same area. Calculate the
surface area and steam consumption.
8.5-1. Boiling Points in a Triple-Effect Evaporator. A solution with a negligible boiling-
point rise is being evaporated in a triple-effect evaporator using saturated steam
at 121.1°C (394.3 K). The pressure in the vapor of the last effect is 25.6 kPa abs.
The heat-transfer coefficients are U₁ = 2840, U₂ = 1988, and U₁ = 1420
W/m² K and the areas are equal. Estimate the boiling point in each of the
evaporators.
The power generation unit in a plant uses a hot exhaust gas from another process to produce work. The gas enters at 10 bar and 350°C and exits at 1 bar and 40°C. The process produces a net amount of work equal to 4500 J/mol and it exchanges an unknown amount of heat with the surroundings. 1.1 Determine the amount of heat exchanged with the surroundings. Is this heat absorbed or rejected by the system? 1.2 Calculate the entropy change of the exhaust gas. 1.3 As a young and ambitious chemical engineer, you seek ways to improve the process. What is the maximum amount of work that you could extract from this system? Assume that the inlet and outlet conditions of the exhaust gas remain the same.
Additional data: Assume the surroundings to be at the constant temperature of 298 K and the exhaust gas to be ideal with CP = 29.3 J/mol.K
Latihan mandiri
Reaktor fluidisasi menggunakan katalis padat dengan diameter
partikel 0,25 mm, rapat massa 1,50 g/ml, sperisitas 0,90. Pada
kondisi unggun diam, porositas 0,35, tinggi unggun 2 m. Gas
masuk dari bagian bawah reaktor pada suhu 600°C pada
viskositas 0,025 CP serta rapat massa 0,22 lb/cuft. Pada fluidisasi
minimum, porositas tercapai pada 0,45. Hitung
Hitung
a. Laju alir semu minimum (VM) gas masuk kolom fluidisasi !
b. Tinggi unggun jika Vo = 2 VM
c. Pressure drop pada kondisi Vo = 2,5 VM
<
1 m
= 3,28084 ft
1 g/ml
= 62,43 lbm/ft³
1 cp
gc
= 6,7197 × 10-4 lbm/ft.s
= 32,174 ft/s²
=
Chapter 7 Solutions
Bundle: Automotive Technology: A Systems Approach, 6th + LMS Integrated for MindTap Auto Trades Printed Access Card
Ch. 7 - What is the correct way to dispose of used oil...Ch. 7 - Where in the shop should a list of emergency...Ch. 7 - Which of the following offer(s) the least...Ch. 7 - Which of the following statements about latex and...Ch. 7 - Describe the correct process for lifting a heavy...Ch. 7 - What are bloodborne pathogens and why should...Ch. 7 - List at least five things you should remember when...Ch. 7 - List at least five precautions that must be...Ch. 7 - How should a class B fire be extinguished?Ch. 7 - Where can complete EPA lists of hazardous wastes...
Ch. 7 - Which of the following statements about safety...Ch. 7 - Gasoline is highly volatile highly flammable...Ch. 7 - Technician A says that it is recommended that you...Ch. 7 - Technician A says that used engine coolant should...Ch. 7 - There are many ways to clean parts while they are...Ch. 7 - Federal Right-To-Know Laws concern. auto emission...Ch. 7 - Which of the following is/are important when work...Ch. 7 - Technician A says that the volatility of a...Ch. 7 - Which of the following is not recommended for use...Ch. 7 - List at least five precautions that must be...Ch. 7 - What is the correct procedure for using a fire...Ch. 7 - Technician A ties his long hair behind his head...Ch. 7 - Technician A uses compressed air to blow dirt from...Ch. 7 - Heavy protective gloves should be worn when....Ch. 7 - Proper disposal of oil filters includes. recycling...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- determine the binary diffusion coefficient of CO2 in air at a) 200 K and 1 atm b)400K and 0.5atm c)600 K and 5 atmarrow_forwardUsing Rachford-Rice in Excel, analyze flash distillation of the following feed stream at P = 1000 kPa and T = 30°C. Feed (1000 kmol/hr) is composed of ethane (25%), propane (30%), propylene (5%) and n-hexane (40%):a. What is the composition and flowrate of the vapor stream? [V should be 196 kmol/hr when solved]b. What is the composition and flowrate of the liquid stream?c. What fraction of the n-hexane (feed) ends up in the vapor phase?d. What fraction of the ethane (feed) ends up in the liquid phase?arrow_forwardA 40 mol % ethanol 60 mol % water mixture at 60 °C and 1 atm is heated. Using Figure 2-3 answer the following:a. At what temperature does the mixture first begin to boil? What is the composition of the first bubble of vapor?b. At what temperature would it stop boiling (assume no material is removed)? What is the composition of the last droplet of liquid?c. At 82 °C, what fraction is liquid? [should be 0.6]d. When 90% has been vaporized, what is the temperature, and what are the liquid and vapor compositions?arrow_forward
- Using Rachford-Rice in Excel, analyze flash distillation of the following feed stream at P = 1000 kPa and T = 30°C. Feed (1000 kmol/hr) is composed of ethane (25%), propane (30%), propylene (5%) and n-hexane (40%):a. What is the composition and flowrate of the vapor stream? [196 kmol/hr]b. What is the composition and flowrate of the liquid stream?c. What fraction of the n-hexane (feed) ends up in the vapor phase?d. What fraction of the ethane (feed) ends up in the liquid phase?arrow_forwardConsidering the molar flux as estimated by the Whitman two-film theory, show the relationship between the mass transfer coefficients based on concentration, and mol fraction gradients, kc and ky, respectively, is given by: ky = Ckc, where C is the total concentration. do not use chatgpt please, i did not understan from it thats why i paid for bartlebyarrow_forwardConsidering the molar flux as estimated by the Whitman two-film theory, show the relationship between the mass transfer coefficients based on concentration, and mol fraction gradients, kc and ky, respectively, is given by: ky = Ckc, where C is the total concentration. please do not use chatgpt, i did not understand from it that is why i paid for this.arrow_forward
- We have a feed that is a binary mixture of methanol and water (55.0 mol% methanol) that is sent to a system of two flash drums hooked together. The vapor from the first drum is cooled, which partially condenses the vapor, and then is fed to the second flash drum. Both drums operate at a pressure of 1.0 atm and are adiabatic. The feed rate to the first drum is 1000.0 kmol/h. We desire a liquid product from the first drum that is 30.0 mol% methanol (x1 = 0.300). The second drum operates at a fraction vaporized of (V/F)2 = 0.250. The equilibrium data are in Table 2-8. Find the following for the first drum: y1, T1, (V/F)1, and vapor flow rate V1. Find the following for the second drum: y2, x2, T2, and vapor flow rate V2.arrow_forwardShow that the overall mass transfer coefficient, Ky, can be related to the individual gas and liquid film mass transfer coefficients, ky and kx, respectively, by the following equation: 1 K y = 1 + m kk y xarrow_forwardUse the approach given to solvearrow_forward
- Antoine constants for vapor pressure for n-pentane and n-hexane are listed in Table 2-3. a. Predict the vapor pressure at 0.0°C for pure n-pentane. b. Predict the boiling point of pure n-pentane at 3.0 atm pressure. c. Predict the boiling pressure if pure n-pentane is boiling at 0.0°C. d. At a pressure of 500.0 mm Hg and temperature of 30.0°C, predict the K values for n-pentane and n-hexane using Raoult’s law. e. If T = 30.0°C and p = 500.0 mm Hg, determine the mole fractions in the liquid and vapor phases of an equilibrium mixture of n-pentane and n-hexane. f. 1.0 moles of a mixture that is 75.0 mol% n-pentane and 25.0 mol% n-hexane is placed in a closed chamber. The pressure is adjusted to 500.0 mm Hg, and the temperature to 30.0°C. The vapor and liquid mole fractions were found in part e. How many moles of liquid and moles of vapor are there at equilibrium? g. If 1.0 mol/min of a mixture that is 75.0 mol% n-pentane and 25.0 mol% n-hexane is fed continuously to an equilibrium flash…arrow_forwardA 40 mol % ethanol 60 mol % water mixture at 60 °C and 1 atm is heated. Using Figure 2-3 answer the following:a. At what temperature does the mixture first begin to boil? What is the composition of the first bubble of vapor?b. At what temperature would it stop boiling (assume no material is removed)? What is the composition of the last droplet of liquid?c. At 82 °C, what fraction is liquid? d. When 90% has been vaporized, what is the temperature, and what are the liquid and vapor compositions?arrow_forwardIs a component with a lower vapor pressure more or less volatile than a component with a higher vapor pressure? Briefly explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The
General Industrial Safety; Author: Jim Pytel;https://www.youtube.com/watch?v=RXtF_vQRebM;License: Standard youtube license