![Lehninger Principles of Biochemistry](https://www.bartleby.com/isbn_cover_images/9781464126116/9781464126116_largeCoverImage.gif)
Concept explainers
To determine: The bond in α-D-glucose must be broken to change its configuration to β-D-glucose.
Introduction: Diastereomers are those stereoisomers who differ in orientation of two chiral centers due to which the isomers are not the mirror images of each other. The cyclic forms of diastereoisomeric sugars which differ at the anomeric carbon (carbonyl carbon which reacts to form hemiacetal) are known as anomers. Hemiacetal is formed when the carbonyl carbon (partially positive) and oxygen of hydroxyl group (partially negative) forms a bond. The hemiacetal anomers exist in alpha and beta forms based on the site of substituent at anomeric carbon.
To determine: The bond in D-glucose must be broken to change its configuration to D-mannose.
Introduction:
Diastereomers are those stereoisomers who differ in orientation of two chiral centers due to which the isomers are not the mirror images of each other. The cyclic forms of diastereoisomeric sugars which differ at the anomeric carbon (carbonyl carbon which reacts to form hemiacetal) are known as anomers. Hemiacetal is formed when the carbonyl carbon (partially positive) and oxygen of hydroxyl group (partially negative) forms a bond. The hemiacetal anomers exist in alpha and beta forms based on the site of substituent at anomeric carbon.
To determine: The bond to convert one “chair” form of D-glucose to the other.
Introduction:
Diastereomers are those stereoisomers who differ in orientation of two chiral centers due to which the isomers are not the mirror images of each other. The cyclic forms of diastereoisomeric sugars which differ at the anomeric carbon (carbonyl carbon which reacts to form hemiacetal) are known as anomers. Hemiacetal is formed when the carbonyl carbon (partially positive) and oxygen of hydroxyl group (partially negative) forms a bond. The hemiacetal anomers exist in alpha and beta forms based on the site of substituent at anomeric carbon.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 7 Solutions
Lehninger Principles of Biochemistry
- Give examples of balanced redox reactions that match the following:-Catabolic-Anabolic-Oxidative-Reductivearrow_forwardIf there are 20uM of a GLUT2 transporter on the surface of a cell, each able to move 8 per second, and 50mM glucose outside of the cell, what is the flux into the cell in mM/sec?arrow_forwardA transporter is responsible for antiporting calcium and glucose. The transporter brings glucose into the cell and sends calcium out of the cell. If blood [calcium] = 2.55mM and intracellular [calcium] = 7uM, blood [glucose] = 5.2mM, and intracellular [glucose] = 40uM, what is the free energy of transport? Assume a membrane potential of 62mV (negative inside).arrow_forward
- An ATP-coupled transporter is used to import 1 phosphate from the extracellular environment. Intracellular phosphate exists at 65mM, while it is 2mM outside.Assume a free energy change of ATP hydrolysis of -42.7 kJ/mol. What is the net free energy change of the coupled reaction? Assume a membrane potential of 70mV.arrow_forwardAnother transporter brings 3 chloride ions into the cell. Outside, chloride has a concentration of 107mM, and 4mM inside the cell. Assuming a membrane potential of 62mV (negative inside), what is the free energy of transport of these ions?arrow_forwardFor the Oxaloacetate -> Malate reaction, assume the normal ratio of NAD/NADH, what is the maximum ratio of Malate/Oxaloacetate that will allow reaction progress?arrow_forward
- A particular particle is trying to cross a membrane by simple diffusion from a high concentration of 20mM to a low concentration of 20uM. If a membrane is 15uM in width, and the diffusion coefficient of the particle is 5 uM/sec, what is the influx in uM/sec?arrow_forwardMechanisms: 1. Give a full arrow-pushing mechanism for the hydrolysis of the gamma phosphate of ATP by an ATPase. 2. Give a full arrow pushing mechanism of the spontaneous redox reaction between NAD+/NADH and oxaloacetate/malate.arrow_forwardDefine the difference between primary and secondary active transport. Is one preferable to another?arrow_forward
- Which B vitamin is responsible for generating the following:- FAD/FMN-NAD/NADH/NADP/NADPH-Coenzyme Aarrow_forwardWhat is the free energy change of an NADH mediated reduction of acetaldehyde to ethanol if blood ethanol is 0.2% by volume, and [Acetaldehyde] = 9uM. Assume the ratio of NAD/NADH is the same as discussed in class.arrow_forwardWhat is the role of each redox cofactor in the cell? Be specific about subcellular localization, etcarrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319114671/9781319114671_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781464126116/9781464126116_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118918401/9781118918401_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305961135/9781305961135_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577206/9781305577206_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134015187/9780134015187_smallCoverImage.gif)