(III) A 3.0-m-long steel chain is stretched out along the top level of a horizontal scaffold at a construction site, in such a way that 2.0 m of the chain remains on the top level and 1.0 m hangs vertically, Fig. 7–26. At this point, the force on the hanging segment is sufficient to pull the entire chain over the edge. Once the chain is moving, the kinetic friction is so small that it can be neglected. How much work is performed on the chain by the force of gravity as the chain falls from the point where 2.0 m remains on the scaffold to the point where the entire chain has left the scaffold? (Assume that the chain has a linear weight density of 18 N/m.) FIGURE 7-26 Problem 49. Let y represent the length of chain hanging over the table, and let λ represent the weight per unit length of the chain. Then the force of gravity (weight) of the hanging chain is F G = λ y . As the next small length of chain dy comes over the table edge, gravity does an infinitesimal amount of work on the hanging chain given by the force tunes the distance. F G dy = λydy . To find the total amount of work that gravity does on the chain, integrate that work expression, with the limits of integration representing the amount of chain hanging over the table. W = ∫ y initial y final F G d y = ∫ 1.0 m 3.0 m λ y d y = 1 2 λ y 2 | 1.0 m 3.0 m = 1 2 ( 18 N / m ) ( 9.0 m 2 − 1.0 m 2 ) = 72 J
(III) A 3.0-m-long steel chain is stretched out along the top level of a horizontal scaffold at a construction site, in such a way that 2.0 m of the chain remains on the top level and 1.0 m hangs vertically, Fig. 7–26. At this point, the force on the hanging segment is sufficient to pull the entire chain over the edge. Once the chain is moving, the kinetic friction is so small that it can be neglected. How much work is performed on the chain by the force of gravity as the chain falls from the point where 2.0 m remains on the scaffold to the point where the entire chain has left the scaffold? (Assume that the chain has a linear weight density of 18 N/m.) FIGURE 7-26 Problem 49. Let y represent the length of chain hanging over the table, and let λ represent the weight per unit length of the chain. Then the force of gravity (weight) of the hanging chain is F G = λ y . As the next small length of chain dy comes over the table edge, gravity does an infinitesimal amount of work on the hanging chain given by the force tunes the distance. F G dy = λydy . To find the total amount of work that gravity does on the chain, integrate that work expression, with the limits of integration representing the amount of chain hanging over the table. W = ∫ y initial y final F G d y = ∫ 1.0 m 3.0 m λ y d y = 1 2 λ y 2 | 1.0 m 3.0 m = 1 2 ( 18 N / m ) ( 9.0 m 2 − 1.0 m 2 ) = 72 J
(III) A 3.0-m-long steel chain is stretched out along the top level of a horizontal scaffold at a construction site, in such a way that 2.0 m of the chain remains on the top level and 1.0 m hangs vertically, Fig. 7–26. At this point, the force on the hanging segment is sufficient to pull the entire chain over the edge. Once the chain is moving, the kinetic friction is so small that it can be neglected. How much work is performed on the chain by the force of gravity as the chain falls from the point where 2.0 m remains on the scaffold to the point where the entire chain has left the scaffold? (Assume that the chain has a linear weight density of 18 N/m.)
FIGURE 7-26
Problem 49.
Let y represent the length of chain hanging over the table, and let λ represent the weight per unit length of the chain. Then the force of gravity (weight) of the hanging chain is FG = λy. As the next small length of chain dy comes over the table edge, gravity does an infinitesimal amount of work on the hanging chain given by the force tunes the distance. FGdy = λydy. To find the total amount of work that gravity does on the chain, integrate that work expression, with the limits of integration representing the amount of chain hanging over the table.
W
=
∫
y
initial
y
final
F
G
d
y
=
∫
1.0
m
3.0
m
λ
y
d
y
=
1
2
λ
y
2
|
1.0
m
3.0
m
=
1
2
(
18
N
/
m
)
(
9.0
m
2
−
1.0
m
2
)
=
72
J
SARET CRKS AUTOWAY
12. A stone is dropped from the top of a cliff. It is seen to hit the ground below
after 3.55 s. How high is the cliff?
13. A ball is dropped from rest at the top of a building that is 320 m tall. Assuming
no air resistance, what is the speed of the ball just before it strikes the ground?
14. Estimate (a) how long it took King Kong to fall straight down from the top
of the Empire State Building (280m high), and (b) his velocity just before
"landing".
Useful equations
For Constant Velocity:
V =>
D
X = V₁t + Xo
For Constant Acceleration:
Vr = V + at
X = Xo+Vot +
v=V+2a(X-Xo)
\prom = V +V
V velocity
t = time
D Distance
X = Final Position
Xo Initial Position
V = Final Velocity
Vo Initial Velocity
a = acceleration
For free fall
Yf
= Final Position
Yo Initial Position
g = 9.80
m
$2
For free fall:
V = V + gt
Y=Yo+Vo t +
+gt
V,² = V₁²+2g (Y-Yo)
V+Vo
Vprom=
2
6
Solve the problems
Chapter 7 Solutions
Physics for Scientists & Engineers with Modern Physics [With Access Code]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY