![Precalculus: Mathematics for Calculus - 6th Edition](https://www.bartleby.com/isbn_cover_images/9780840068071/9780840068071_largeCoverImage.gif)
(a)
To find: The equation that outputs the combined wave and also find the nodes.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 2P
The combined equation of the wave is
The nodes are at
Explanation of Solution
Given:
A wave travelling in a rope of length 24 ft is a combination of two distinct waves
Result used:
Calculation:
The combined wave equation is the sum of the two equations of the wave.
Therefore, obtain the combined equation as follows.
Therefore, the combined wave equation is
Note that the node occurs when
That is
Therefore, nodes occur at
(b)
To sketch: The shape of the wave for times
(b)
![Check Mark](/static/check-mark.png)
Explanation of Solution
Given:
A wave travelling in a rope of length 24 ft is a combination of two distinct waves
Calculation:
The position of any point x on the wave at time t in the canal is given by
Substitute
Use online graphing calculator and draw the graph of
From Figure 1 it can be observed that the wave is a sinusoidal wave.
Substitute
Use online graphing calculator and draw the graph of
From Figure 2 it can be observed that the wave is a sinusoidal wave.
Substitute
Use online graphing calculator and draw the graph of
From Figure 3 it can be observed that the wave is a sinusoidal wave.
Substitute
Use online graphing calculator and draw the graph of
From Figure 4 it can be observed that the wave has very small amplitude so it appears to be coinciding with the x-axis.
Substitute
Use online graphing calculator and draw the graph of
From Figure 5 it can be observed that the wave is a sinusoidal wave.
Substitute
Use online graphing calculator and draw the graph of
From Figure 6 it can be observed that the wave is a sinusoidal wave.
Substitute
Use online graphing calculator and draw the graph of
From Figure 7 it can be observed that the wave is a sinusoidal wave.
From above all graphs it can be observed that the point is at same position at every instant of time.
Therefore, it can be concluded that the wave is standing.
Chapter 7 Solutions
Precalculus: Mathematics for Calculus - 6th Edition
- Draw the vertical and horizontal asymptotes. Then plot the intercepts (if any), and plot at least one point on each side of each vertical asymptote.arrow_forwardDraw the asymptotes (if there are any). Then plot two points on each piece of the graph.arrow_forwardCancel Done RESET Suppose that R(x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R(x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (a) Find another zero of R(x). ☐ | | | | |│ | | | -1 བ ¢ Live Adjust Filters Croparrow_forward
- Suppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (c) What is the maximum number of nonreal zeros that R (x) can have? ☐arrow_forwardSuppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (b) What is the maximum number of real zeros that R (x) can have? ☐arrow_forwardi need help please dont use chat gptarrow_forward
- 3.1 Limits 1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice. x+3° x+3* x+3 (a) Is 5 (c) Does not exist (b) is 6 (d) is infinitearrow_forward1 pts Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is Question 1 -0.246 0.072 -0.934 0.478 -0.914 -0.855 0.710 0.262 .arrow_forward2. Answer the following questions. (A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity Vx (VF) V(V •F) - V²F (B) [50%] Remark. You are confined to use the differential identities. Let u and v be scalar fields, and F be a vector field given by F = (Vu) x (Vv) (i) Show that F is solenoidal (or incompressible). (ii) Show that G = (uvv – vVu) is a vector potential for F.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)