Concept explainers
As outlined in this chapter, sex can be defined at several levels: chromosomal, gonadal, and
An Indian athlete, Santhi Soundarajan, finished second in the 800-meter run at the Asian Games in Doha, Qatar, in 2006. After the race, she was asked to take a sex test. According to press reports, the tests showed that she “appeared to have abnormal chromosomes.” An official stated that she had more Y chromosomes than allowed. As a result, she was stripped of her medal, banned from further competition by the Indian Olympic Association, and shunned by her local community. Before the race in Doha, Santhi had competed in 8 international competitions and won 12 medals. Sometime after this incident, she attempted suicide. She now runs a training school for athletes in Tamil Nadu, India. Although the number and types of tests done on Santhi have not been revealed, such tests usually involve examination of the external genitals, a chromosome analysis, and measurement of hormone levels.
Suppose you were on the committee deciding whether Santhi could compete as a female. Consider each of the following hypothetical tests one at a time and base your conclusions only on the results of that test. The results of a physical examination show she has female genitals. On this basis, would you allow her to keep her medal and compete as a female in future races? Suppose the results of a chromosomal analysis shows that she has an XY chromosome set and is chromosomally male. Would you allow her to keep her medal and compete as a female? Lastly, suppose a test for hormone levels shows that she has levels of the male sex hormone testosterone that are higher than average for females but at least 10 times lower than the average for males. Would you allow her to keep her medal and compete in future races as a female? Now, put the results of all three tests together, and consider them as a whole. What are your conclusions?
Now, let’s consider the case of a South African runner, Caster Semenya, who won the 800-meter run at the World Championships held in Berlin, Germany, in 2009. After the race, she was asked to undergo sex testing. The IAAF stated that the tests were requested to ascertain whether she had a rare medical condition that gave her an unfair physical advantage. The nature of the tests and their results were not released, but press reports indicate that she did not have ovaries or a uterus, and had testosterone levels intermediate between the averages for males and females. In the end, the IAAF agreed to keep the results of her tests confidential, and Caster was allowed to keep her medal and return to international competition in 2010. In both cases, what the IAAF considers the threshold for determining who can compete as a female has not been stated.
Would you recommend that testing of female athletes be continued to ensure that males do not compete as females? Or should all such testing be banned?
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
HUMAN HEREDITY (LL)-W/MINDTAP ACCESS
- Question #5: Assume that two genes are identified that confer gametophytic facultative apomixis in soybean. The genes show independent assortment. Recessive alleles at both loci are required for the facultative apomixis. Facultative apomixis is triggered when the temperature at pollination is above 20 degrees C. At temperatures below 20 degrees C, all reproduction is sexual, independent of genotype. A facultative apomict male, capable of producing viable pollen, was crossed with a sexually reproducing female. Assuming the parents are completely inbred, what are the predicted phenotypic ratios (apomict: non-apomict) for the F1, F2, and DH (F1-derived) generations at each of the following temperatures*: a) 15°C? b) 25°C? *for full credit, show crosses and genotypes where appropriate. Remember to position the female first (left side) in the cross. Type your answer here:arrow_forwarda. What percentage of a drug is eliminated after 4 half-lives? Please round to the nearest percent. b. What will happen to elimination of the drug in the previous question if the system is saturated? explain and show any math involvedarrow_forwardIf you wanted to reduce the difference between peak and trough levels that occur with repeated administration of a drug, how would you adjust the dose and dose interval without changing the plateau concentration (plateau is the average of peak and trough levels)? Select your answers for both dose and interval. Hint: It may be helpful to think about this problem using an example such as food. How would you eat if you wanted to maintain very steady hunger/satiety levels without changing your total caloric intake? Options: A. Dose; Increase dose B. Dose; Decrease dose C. Dose; Do not change dose D. Interval; Increase the interval between doses (give the drug less frequently) E. Interval; Decrease the interval between doses (give the drug more frequently) F. Interval; Do not change the intervalarrow_forward
- What percentage of a drug is eliminated after 4 half-lives? Please round to the nearest percent. Show the matharrow_forwardBriefly explain the 6 domain of interprofessional collaboration: Role clarification, Team functioning, Interprofessional communication, Patient/client/family/community-centered care, Interprofessional conflict resolution, Collaborative leadership. Provide a specific negative events that nursing student would observe in a clinical setting for each domain.arrow_forwardwhat is an intermittent water course and what kind of fish habitat it would providearrow_forward
- why are native freshwater mussels are an important part of great lakes ecosystemarrow_forwardwhat morphological features differentiate the lamprey species and other species in the great lakesarrow_forwardThere are a wide range of therapeutic applications available as options for patients. Medical professionals should be aware of these applications so they can make informed recommendations to patients. To gain a better understanding of some therapeutic applications and how they are related to RNA and mRNA, research long non-coding RNA. Respond to the following in a minimum of 175 words: What is lncRNA and what does it do? How does IncRNA differ from mRNA? What are some therapeutic applications associated with lncRNA? Think about possible future uses of this application. What are the advantages and disadvantages of this application and its continued use?arrow_forward
- four fish or mussel species that are native to the great lakesarrow_forwardThere are a wide range of therapeutic applications available as options for patients. Medical professionals should be aware of these applications so they can make informed recommendations to patients. To gain a better understanding of some therapeutic applications and how they are related to RNA and mRNA, research long non-coding RNA. Respond to the following in a minimum of 175 words: What is lncRNA and what does it do? How does IncRNA differ from mRNA? What are some therapeutic applications associated with lncRNA? Think about possible future uses of this application. What are the advantages and disadvantages of this application and its continued use?arrow_forwardfour physial characteristics of a fish or a mussel that would help you identify it to a speciesarrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning