EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 26QLP
Observe the behavior of the specimen shown in Fig. 7.13, and state whether the material has a high or a low strain-rate sensitivity exponent, m (see Section 2.2.7).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
ICLASS DISCUSSION ITEM 9.8
Piezoresistive Effect in Strain Gages
For a typical metal foil strain gage with a gage factor of 2.0, how large is the piezo-
resistive effect in comparison to the effects of change in area and change in length?
A cylindrical specimen of brass that has a diameter of 21 mm, a tensile modulus of 122 GPa, and a Poisson’s ratio of 0.37 is pulled in tension with force of 38704 N. If the deformation is totally elastic, what is the strain experienced by the specimen?
stress-strain behavior for the brass specimen shown in Figure 6.12, determine the following: (a) The modulus of elasticity (b) The yield strength at a strain offset of 0.002 (c) The maximum load that can be sustained by a cylindrical specimen hav- ing an original diameter of 12.8 mm (0.505 in.) (d) The change in length of a specimen originally 250 mm (10 in.) long that is subjected to a tensile stress of 345 MPa (50,000 psi)
Chapter 7 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 7 - Summarize the important mechanical and physical...Ch. 7 - What are the major differences between the (a)...Ch. 7 - List properties that are influenced by the degree...Ch. 7 - What is the difference between condensation...Ch. 7 - Explain the differences between linear, branched,...Ch. 7 - What is the glass-transition temperature?Ch. 7 - List and explain the additives commonly used in...Ch. 7 - What is crazing?Ch. 7 - What are polyblends?Ch. 7 - List the major differences between thermoplastics...
Ch. 7 - What is an elastomer?Ch. 7 - What effects does a plasticizing agent have on a...Ch. 7 - Define the following abbreviations: PMMA, PVC,...Ch. 7 - Explain why it would be advantageous to produce a...Ch. 7 - What are the differences and similarities of...Ch. 7 - Are molecular weight and degree of polymerization...Ch. 7 - Why do polymers need to be dried before...Ch. 7 - What characteristics of polymers make them...Ch. 7 - Do polymers strain harden more than metals or vice...Ch. 7 - Inspect various plastic components in an...Ch. 7 - Give applications for which flammability of...Ch. 7 - What characteristics make polymers advantageous...Ch. 7 - What properties do elastomers have that...Ch. 7 - Do you think that the substitution of plastics for...Ch. 7 - Is it possible for a material to have a hysteresis...Ch. 7 - Observe the behavior of the specimen shown in Fig....Ch. 7 - Add more to the applications column in Table 7.3.Ch. 7 - Discuss the significance of the glass-transition...Ch. 7 - Prob. 29QLPCh. 7 - Explain how cross-linking improves the strength of...Ch. 7 - Describe the methods by which the optical...Ch. 7 - How can polymers be made to conduct electricity?...Ch. 7 - Explain the reasons for which elastomers were...Ch. 7 - Give several examples of plastic products or...Ch. 7 - Describe your opinions regarding the recycling of...Ch. 7 - Explain how you would go about determining the...Ch. 7 - Compare the values of the elastic modulus, given...Ch. 7 - Why is there so much variation in the stiffness of...Ch. 7 - Explain why thermoplastics are easier to recycle...Ch. 7 - Give an example where crazing is desirable.Ch. 7 - Describe the principle behind shrink wrapping.Ch. 7 - List and explain some environmental pros and cons...Ch. 7 - List the characteristics required of a polymer for...Ch. 7 - How can you tell whether a part is made of a...Ch. 7 - As you know, there are plastic paper clips...Ch. 7 - By incorporating small amounts of a blowing agent,...Ch. 7 - In injection-molding operations (Section 19.3), it...Ch. 7 - From an environmental standpoint, do you feel it...Ch. 7 - Calculate the areas under the stressstrain curve...Ch. 7 - Prob. 50QTPCh. 7 - Prob. 51QTPCh. 7 - Estimate the number of molecules in a typical...Ch. 7 - Using strength and density data, determine the...Ch. 7 - Prob. 54QTPCh. 7 - Prob. 55SDPCh. 7 - Describe the design considerations involved in...Ch. 7 - Assume that you are manufacturing a product in...Ch. 7 - Assume you work for a company that produces...Ch. 7 - Prob. 59SDPCh. 7 - Make a list of products or parts that currently...Ch. 7 - Prob. 61SDPCh. 7 - Prob. 62SDPCh. 7 - Prob. 63SDPCh. 7 - Prob. 64SDPCh. 7 - With Table 7.3 as a guide, inspect various...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A cylindrical specimen of brass that has a diameter of 15 mm, a tensile modulus of 120 GPa, and a Poisson’s ratio of 0.30 is pulled in tension with force of 50,000 N. If the deformation is totally elastic, what is the approximate strain experienced by the specimen?arrow_forwardA cylindrical specimen of brass that has a diameter of 20 mm, a tensile modulus of 110 GPa, and a Poisson's ratio of 0.35 is pulled in tension with a force of 40, 000 N. If the deformation is totally elastic, what is the strain experienced by the specimen along the longitudinal direction?arrow_forwardA cylindrical specimen of brass that has a diameter of 20 mm, a tensile modulus of 110 GPa, and a Poisson's ratio of 0.35 is pulled in tension with a force of 40, 000 N. If the deformation is totally elastic, what is the strain experienced by the specimen along the lateral direction?arrow_forward
- I am not reallyunderstanding what this problem wants with the wording, coud you help me clarify that please? Thank you so much!!arrow_forwardExample 2. A cylindrical bar of 40 mm diameter and 1 m length is subjected to a tensile test. Its longitudinal strain is 6 times that of its lateral strain. If the modulus of elasticity is 2 x 105 N/mm², then its modulus of rigidity will be 2arrow_forwardA steel rod is subjected to a force of 5 kN. The initial length of the rod is 690 mm and after elongation its length is equal to 700 mm. Estimate engineering and true strain.arrow_forward
- Stress Strain-Behavior A specimen of aluminum having a rectangular cross section 10 mm × 12.7 mm(0.4 in.× 0.5 in. ) is pulled in tension with 35,500 N (8000 lbf) force, producing onlyelastic deformation. Calculate the resulting strain.arrow_forwardA sample is subjected to a 33.5 kN tensile load. This results in an elastic deformation only (engineering strain = 0.00405). The length of the material is 12.7 mm. If the material has a rectangular cross-section, calculate the width in mm.arrow_forwardExplain the difference between engineering strain (or stress) and true strain (or stress). Derive the expression for how true strain is related to engineering strain. (You can find the result in Section 6.7 of Callister, 10th edition). Also, state the relationship for how true stress is related to engineering stress (you do not need to derive this one).arrow_forward
- ● Example 3.2 A 60mm diameter solid shaft has a strain gauge mounted at 65° to the axis of the shaft. In service a torque is applied to the shaft and the strain gauge reads 200 x 10-6. Calculate the value of the torque if the shaft is made from steel with E = 207 GPa and v = 0.3. (BC&A question 11.18) Strain Transformations Mechanical Engineering Mechanics of Materials 2 Solution 3.2 Applied torque alone will produce only shear stress/strain in the directions parallel and perpendicular to the torque. The strain gauge is mounted at 65° to the axis of the shaft. Strain Transformations Mechanical Engineering Mechanics of Materials 2 Now Strain gauge From the strain circle 65⁰ Strain Transformations Note that for circular shaft 4 D J = ² (2) ²* 33 Dr PJ Martin Lecture Notes 34 Dr PJ Martin Lecture Notes 35arrow_forward8. A cylindrical specimen of a hypothetical metal alloy is stressed in compression. If its original and final diameters are 20.000 and 20.025 mm, respectively, and its final length is 74.96 mm, compute its original length if the deformation is totally elastic. The elastic and shear moduli for this alloy are 105 GPa and 39.7 GPa, respectivelyarrow_forwardA specimen of copper having a rectangular cross section 1.20 in. x 1.5 in.) is pulled in tension with 20,000lbf force, producing only elastic deformation. Calculate the resulting strain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Failure Theories (Tresca, von Mises etc...); Author: The Efficient Engineer;https://www.youtube.com/watch?v=xkbQnBAOFEg;License: Standard youtube license