
(a)
To determine: The test of the given hypothesis on the alkali metals; also the factors favoring the superoxide formation.
(a)

Answer to Problem 1DE
Solution: The oxidation of rubidium and cesium in presence of air forms superoxide. The bigger size of cation is a favorable factor for superoxide formation.
Explanation of Solution
The alkali metals such as rubidium and cesium which has lower first ionization energies can be used to test the given hypothesis. The larger size of cation results in the easy removal of electron due to which ionization energy of the atom decreases. Therefore, the oxidation of rubidium and cesium metal in presence of oxygen results in the formation of superoxide which confirms the statement that the lower ionization energy favors the superoxide formation.
The larger size cation can accommodate the larger size anion around it. Therefore, the bigger size of cation is a property which favors the superoxide formation.
The oxidation of rubidium and cesium in presence of air forms superoxide. The bigger size of cation is a favorable factor for superoxide formation.
(b)
To determine: The experiment to determine the potassium peroxide reacts with
(b)

Answer to Problem 1DE
Solution: The color of potassium superoxide salt changes from light yellow to white on reaction with water and carbon dioxide. The products of the reaction with water is
Explanation of Solution
The potassium superoxide is a yellow color salt. The reaction of potassium superoxide with water results in the change of its color from yellow to white. In the same way the potassium superoxide changes its color instaneously on coming in contact with water. This experiment confirms that the potassium superoxide reacts with carbon dioxide and water.
The reaction of potassium superoxide with water is given as,
The reaction of potassium superoxide with carbon dioxide is given as,
The color of potassium superoxide salt changes from light yellow to white on reaction with water and carbon dioxide. The products of the reaction with water is
(c)
To determine: The experiment to determine the reaction given in part (b) important in the firefighters breathing masks or not.
(c)

Answer to Problem 1DE
Solution: The green canister present in the breathing apparatus contains potassium superoxide as oxygen generator.
Explanation of Solution
The firefighter breathing apparatus contains a green canister which contains the chemicals which are used in the breathing apparatus. This is present at the base of the breathing device, The oxygen generated by the green canister is done by using potassium superoxide present in the green canister. This confirms that the reaction given in part (b) is important in the firefighters breathing apparatus.
The green canister present in the breathing apparatus contains potassium superoxide as oxygen generator.
(d)
To determine: The experiment to determine the percentages of
(d)

Answer to Problem 1DE
Solution: The reaction of
Explanation of Solution
The potassium superoxide on removal of oxygen at
The above reaction is still goes on heating will gives the formation of
After determining the mass of
The reaction of
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry: The Central Science Plus Mastering Chemistry with Pearson eText -- Access Card Package (14th Edition)
- The following equations represent the formation of compound MX. What is the AH for the electron affinity of X (g)? X₂ (g) → 2X (g) M (s) → M (g) M (g) M (g) + e- AH = 60 kJ/mol AH = 22 kJ/mol X (g) + e-X (g) M* (g) +X (g) → MX (s) AH = 118 kJ/mol AH = ? AH = -190 kJ/mol AH = -100 kJ/mol a) -80 kJ b) -30 kJ c) -20 kJ d) 20 kJ e) 156 kJarrow_forwardA covalent bond is the result of the a) b) c) d) e) overlap of two half-filled s orbitals overlap of a half-filled s orbital and a half-filled p orbital overlap of two half-filled p orbitals along their axes parallel overlap of two half-filled parallel p orbitals all of the abovearrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C T Add/Remove step X ноarrow_forward
- Which one of the following atoms should have the largest electron affinity? a) b) c) d) 으으 e) 1s² 2s² 2p6 3s¹ 1s² 2s² 2p5 1s² 2s² 2p 3s² 3p² 1s² 2s 2p 3s² 3p6 4s2 3ds 1s² 2s² 2p6arrow_forwardAll of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forwardA student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forward
- Ppplllleeeaaasssseeee helllppp wiithhh thisss Organic chemistryyyyyy I talked like this because AI is very annoyingarrow_forwardName the family to which each organic compound belongs. The first answer has been filled in for you. compound CH₂ || CH3-C-NH2 0 ။ CH3-C-CH₂ CH=O–CH=CH, CH₂ HO CH2-CH2-CH-CH3 family amine Darrow_forward1b. Br LOHarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





