College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 14TP
To determine
The correct words suitable for the blanks in the statement.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
College Physics
Ch. 7 - Give an example of something think of as work in...Ch. 7 - Give an example of a situation in which there is a...Ch. 7 - Describe a situation in which a force is exerted...Ch. 7 - The person in Figure 7.33 does work on the lawn...Ch. 7 - Work done on a system puts energy into it Work...Ch. 7 - When solving for speed in Example 7.4, we kept...Ch. 7 - In Example 7.7, we calculated the final speed of a...Ch. 7 - Does the work you do on a book when you lift it...Ch. 7 - What is a conservative force?Ch. 7 - The force exerted by a diving board is...
Ch. 7 - Define mechanical energy. What is the relationship...Ch. 7 - What is the relationship of potential energy to...Ch. 7 - Consider the following scenario. A car for which...Ch. 7 - Describe the energy transfers and transformations...Ch. 7 - Do devices with efficiencies of less than one...Ch. 7 - List four different forms or types of energy. Give...Ch. 7 - List the energy conversions that occur when riding...Ch. 7 - Most electrical appliances are rated in watts....Ch. 7 - Explain, in terms of the definition of power, why...Ch. 7 - A spark of static electricity, such as that you...Ch. 7 - Explain why it is easier to climb a mountain on a...Ch. 7 - Do you do work on the outside world when you rub...Ch. 7 - Shivering is an involuntary response to lowered...Ch. 7 - Discuss the relative effectiveness of dieting and...Ch. 7 - What is the difference between energy conservation...Ch. 7 - If the efficiency of a coal-fired electrical...Ch. 7 - How much work does a supermarket checkout...Ch. 7 - A 75.0-kg person climbs stairs, gaining 2.50...Ch. 7 - (a) Calculate the work done on a 1500-kg elevator...Ch. 7 - Suppose a car travels 108 km at a speed of 30.0...Ch. 7 - Calculate the work done by an 85.0-kg man who...Ch. 7 - How much work is done by the boy pulling his...Ch. 7 - A shopper pushes a grocery cart 20.0 m at constant...Ch. 7 - Suppose the ski patrol lowers a rescue sled and...Ch. 7 - Compare the kinetic energy of a 20,000-kg truck...Ch. 7 - (a) How fast must a 3000-kg elephant move to have...Ch. 7 - Confirm the value given for the kinetic energy of...Ch. 7 - (a) Calculate the force needed to bring a 950-kg...Ch. 7 - A car's bumper is designed to withstand a 4.0-km/h...Ch. 7 - Boxing gloves are padded to lessen the force of a...Ch. 7 - Using energy considerations, calculate the average...Ch. 7 - A hydroelectric power facility (see Figure 7.38)...Ch. 7 - (a) How much gravitational potential energy...Ch. 7 - Suppose a 350-g kookaburra (a large kingfisher...Ch. 7 - In Example 7.7, we found that the speed of a...Ch. 7 - A 100-g toy car is propelled by a compressed...Ch. 7 - In a downhill ski race, surprisingly, little...Ch. 7 - A 5.00105 -kg subway train is brought to a stop...Ch. 7 - A pogo stick has a spring with a force constant of...Ch. 7 - A 60.0-kg skier with an initial speed of 12.0 m/s...Ch. 7 - (a) How high a hill can a car coast up (engine...Ch. 7 - Using values from Table 7.1, how many DNA...Ch. 7 - Using energy considerations and assuming...Ch. 7 - If the energy in fusion bombs were used to supply...Ch. 7 - (a) Use of hydrogen fusion to supply energy is a...Ch. 7 - The Crab Nebula (see Figure 7.41) pulsar is the...Ch. 7 - Suppose a star 1000 times brighter than our Sun...Ch. 7 - A person in good physical condition can put out...Ch. 7 - What is the cost of operating a 3.00-W electric...Ch. 7 - A large household air conditioner may consume 15.0...Ch. 7 - (a) What is the average power consumption in watts...Ch. 7 - (a) What is the average useful power output of a...Ch. 7 - A 500-kg dragster accelerates from rest to a final...Ch. 7 - (a) How long will it take an 850-kg car with a...Ch. 7 - (a) Find the useful power output of an elevator...Ch. 7 - (a) What is the available energy content, in...Ch. 7 - (a) How long would it takea 1.50105 -kg airplane...Ch. 7 - Calculate the power output needed for a 950-kg car...Ch. 7 - (a) Calculate the power per square meter reaching...Ch. 7 - (a) How long can you rapidly climb stairs...Ch. 7 - (a) What is the power output in watts and...Ch. 7 - Calculate the power output in watts and horsepower...Ch. 7 - (a) What is the efficiency of an out-of-condition...Ch. 7 - Energy that is not utilized for work or heat...Ch. 7 - Using data from Table 7.5, calculate the daily...Ch. 7 - What is the efficiency of a subject on a treadmill...Ch. 7 - Shoveling snow can be extremely taxing because the...Ch. 7 - Very large forces are produced in joints when a...Ch. 7 - Jogging on hard surfaces with insufficiently...Ch. 7 - (a) Calculate the energy in kJ used by a 55.0-kg...Ch. 7 - Kanellos Kanellopoulos flew 119 km from Crete to...Ch. 7 - The swimmer shown in Figure 7.44 exerts an average...Ch. 7 - Mountain climbers carry bottled oxygen when at...Ch. 7 - The awe-inspiring Great Pyramid of Cheops was...Ch. 7 - (a) How long can you play tennis on the 800 kJ...Ch. 7 - Integrated Concepts (a) Calculate the force the...Ch. 7 - Integrated Concepts A 75.0-kg cross-country skier...Ch. 7 - Integrated Concepts The 70.0-kg swimmer in Figure...Ch. 7 - Integrated Concepts A toy gun uses a spring with a...Ch. 7 - Integrated Concepts (a) What force must be...Ch. 7 - Unreasonable Results A car advertisement claims...Ch. 7 - Unreasonable Results Body fat is metabolized,...Ch. 7 - Construct Your Own Problem Consider a person...Ch. 7 - Construct Your Own Problem Consider humans...Ch. 7 - Integrated Concepts A 105-kg basketball player...Ch. 7 - Prob. 1TPCh. 7 - Prob. 2TPCh. 7 - Prob. 3TPCh. 7 - Prob. 4TPCh. 7 - Prob. 5TPCh. 7 - Prob. 6TPCh. 7 - Prob. 7TPCh. 7 - Prob. 8TPCh. 7 - Prob. 9TPCh. 7 - Prob. 10TPCh. 7 - Prob. 11TPCh. 7 - Prob. 12TPCh. 7 - Prob. 13TPCh. 7 - Prob. 14TPCh. 7 - Prob. 15TPCh. 7 - Prob. 16TPCh. 7 - Prob. 17TPCh. 7 - Prob. 18TPCh. 7 - Prob. 19TPCh. 7 - Prob. 20TPCh. 7 - Prob. 21TPCh. 7 - Prob. 22TPCh. 7 - Prob. 23TPCh. 7 - Prob. 24TPCh. 7 - Prob. 25TPCh. 7 - Prob. 26TPCh. 7 - Prob. 27TPCh. 7 - Prob. 28TPCh. 7 - Prob. 29TPCh. 7 - Prob. 30TPCh. 7 - Prob. 31TPCh. 7 - Prob. 32TPCh. 7 - Prob. 33TPCh. 7 - Prob. 34TPCh. 7 - Prob. 35TPCh. 7 - Prob. 36TPCh. 7 - Prob. 37TPCh. 7 - Prob. 38TPCh. 7 - Prob. 39TPCh. 7 - Prob. 40TPCh. 7 - Prob. 41TPCh. 7 - Prob. 42TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A pile driver drives posts into the ground by repeatedly dropping a heavy object on them. Assume the object is dropped from the same height each time. By what factor does the energy of the pile driverEarth system change when the mass of the object being dropped is doubled? (a) (b) 1; the energy is the same (c) 2 (d) 4arrow_forwardJonathan is riding a bicycle and encounters a hill of height 7.30 m. At the base of the hill, he is traveling at 6.00 m/s. When he reaches the top of the hill, he is traveling at 1.00 m/s. Jonathan and his bicycle together have a mass of 85.0 kg. Ignore friction in the bicycle mechanism and between the bicycle tires and the road. (a) What is the total external work done on the system of Jonathan and the bicycle between the time he starts up the hill and the time he reaches the top? (b) What is the change in potential energy stored in Jonathans body during this process? (c) How much work does Jonathan do on the bicycle pedals within the JonathanbicycleEarth system during this process?arrow_forwardA block is connected to a spring that is suspended from the ceiling. Assuming air resistance is ignored, describe the energy transformations that occur within the system consisting of the block, the Earth, and the spring when the block is set into vertical motion.arrow_forward
- A small block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of a frictionless, hemispherical bowl of radius R = 30.0 cm (Fig. P8.43). Calculate (a) the gravitational potential energy of the block-Earth system when the block is at point relative to point . (b) the kinetic energy of the block at point . (c) its speed at point B, and (d) its kinetic energy and the potential energy when the block is at point . Figure P8.43 Problems 43 and 44.arrow_forwardFigure P8.39 shows two bar charts. In each, the final kinetic energy is unknown. a. Find Kf. b. If m = 2.5 kg, find vf.arrow_forwardIntegrated Concepts (a) What force must be supplied by an elevator cable to produce an acceleration of 0.800 m/s2 against a 200-N frictional force, if the mass of the loaded elevator is 1500 kg? (b) How much work is done by the cable in lifting the elevator 20.0 m? (c) What is the final speed of the elevator if it starts from rest? (d) How much work went into thermal energy?arrow_forward
- A 7.80-g bullet moving at 575 m/s penetrates a tree trunk to a depth of 5.50 cm. (a) Use work and energy considerations to find the average frictional force that stops the bullet. (b) Assuming the frictional force is constant, determine how much time elapses between the moment the ballet enters the tree and the moment it stops moving.arrow_forwardRubber tends to be nonlinear as an elastic material. Suppose a particular rubber band exerts a restoring force given by Fx(x) = Ax Bx2, where the empirical constants are A = 14 N/m and B = 3.3 N/m2 so that Fx is in newtons when x is in meters. Calculate the change in elastic potential energy of the rubber band when an external force stretches it from x = 0 to x = 0.20 m.arrow_forwardA 3.00-kg object has a velocity (6.00i1.00j)m/s. (a) What is its kinetic energy at this moment? (b) What is the net work done on the object if its velocity changes to (8.00i+4.00j)m/s. (Note: From the definition of the dot product, v2=vv.)arrow_forward
- Integrated Concepts (a) Calculate the force the woman in Figure 7.46 exerts to do a push-up at constant speed, taking all data to be known to three digits. (b) How much work does she do if her center of mass rises 0.240 m? (c) What is her useful power output if she does 25 push-ups in 1 min? (Should work done lowering her body be included? See the discussion of useful work in Work, Energy, and Power in Humans. Figure 7.46 Forces involved in doing push-ups. The woman's weight acts as a force exerted downward on her center of gravity (CG).arrow_forward. An archer using a simple bow exerts a force of 180 N to draw back the bow string 0.50 m. (a) What is the average work done by the archer in preparing to launch her arrow? (Hint: Compute the average work as you would any average quantity: average work = [final work - initial work].) (b) If all the work is converted into the kinetic energy of the arrow upon its release, what is the arrow's speed as it leaves the bow? Assume the mass of the arrow is 0.021 kg and ignore any kinetic energy in the bow as it relaxes to its original shape. (c) If the arrow is shot straight up, what is the maximum height achieved by the arrow? Ignore any effects due to air resistance in making your assessment.arrow_forwardA small block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of a frictionless, hemispherical bowl of radius R = 30.0 cm (Fig. P7.45). Calculate (a) the gravitational potential energy of the block-Earth system when the block is at point relative to point . (b) the kinetic energy of the block at point , (c) its speed at point , and (d) its kinetic energy and the potential energy when the block is at point . Figure P7.45 Problems 45 and 46.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY