EBK CHEMICAL PRINCIPLES
EBK CHEMICAL PRINCIPLES
8th Edition
ISBN: 9781305856745
Author: DECOSTE
Publisher: CENGAGE LEARNING - CONSIGNMENT
bartleby

Videos

Question
Book Icon
Chapter 7, Problem 125AE

(a)

Interpretation Introduction

Interpretation:

The value for the equilibrium constant for the reaction NH3 + H3O+  NH4+ + H2O should be calculated.

Concept Introduction :

The equilibrium constant expression is the ratio of the concentration of products and reactants of a reaction at equilibrium. The concentrations are raised to the power equal to the stoichiometric coefficient in the balanced equation.

(a)

Expert Solution
Check Mark

Answer to Problem 125AE

  Keq=1.8×109

Explanation of Solution

  NH3 + H3O+  NH4+ + H2O

  Keq=[ NH 4 +][ NH 3][ H 3 O +]Keq=1Ka  for NH4+=KbKw=1.8× 10 51.0× 10 14Keq=1.8×109

(b)

Interpretation Introduction

Interpretation:

The value for the equilibrium constant for the reaction NO2 + H3O+  HNO2 + H2O should be calculated.

Concept Introduction :

The equilibrium constant expression is the ratio of the concentration of products and reactants of a reaction at equilibrium. The concentrations are raised to the power equal to the stoichiometric coefficient in the balanced equation.

(b)

Expert Solution
Check Mark

Answer to Problem 125AE

  Keq=2.5×103

Explanation of Solution

  NO2 + H3O+  HNO2 + H2O

  Keq=[ HNO 2][ NO 2 ][ H 3 O +]Keq=1Ka  for HNO2=14.0× 10 4Keq=2.5×103

(c)

Interpretation Introduction

Interpretation:

The value for the equilibrium constant for the reaction NH4+ + CH3CO2  NH3 + CH3COOH should be calculated.

Concept Introduction :

The equilibrium constant expression is the ratio of the concentration of products and reactants of a reaction at equilibrium. The concentrations are raised to the power equal to the stoichiometric coefficient in the balanced equation.

(c)

Expert Solution
Check Mark

Answer to Problem 125AE

  Keq=3.1×105

Explanation of Solution

  NH4+ + CH3CO2  NH3 + CH3COOH

  Keq=[ NH 3][ CH 3COOH][ NH 4 +][ CH 3 CO 2 ]Keq=[ NH 3][ CH 3COOH][ NH 4 +][ CH 3 CO 2 ]×[ H +][ H +]Keq=Ka  for NH4+Ka  for CH3COOH=Kw( K b  for NH 3 )( K a  for CH 3 COOH)Keq=1.0× 10 14( 1.8× 10 5 )( 1.8× 10 5 )Keq=3.1×105

(d)

Interpretation Introduction

Interpretation:

The value for the equilibrium constant for the reaction H3O+ + OH  2 H2O should be calculated.

Concept Introduction :

The equilibrium constant expression is the ratio of the concentration of products and reactants of a reaction at equilibrium. The concentrations are raised to the power equal to the stoichiometric coefficient in the balanced equation.

(d)

Expert Solution
Check Mark

Answer to Problem 125AE

  Keq=1.0×1014

Explanation of Solution

  H3O+ + OH  2 H2O

  Keq=1[ H 3 O +][ OH ]Keq=1Kw=11.0× 10 14Keq=1.0×1014

(e)

Interpretation Introduction

Interpretation:

The value for the equilibrium constant for the reaction NH4+ + OH  NH3 + H2O should be calculated.

Concept Introduction :

The equilibrium constant expression is the ratio of the concentration of products and reactants of a reaction at equilibrium. The concentrations are raised to the power equal to the stoichiometric coefficient in the balanced equation.

(e)

Expert Solution
Check Mark

Answer to Problem 125AE

  Keq=5.6×104

Explanation of Solution

  NH4+ + OH  NH3 + H2O

  Keq=[ NH 3][ NH 4 +][ OH ]Keq=1Kb  for NH3=11.8× 10 5Keq=5.6×104

(f)

Interpretation Introduction

Interpretation:

The value for the equilibrium constant for the reaction HNO2 + OH  NO2 + H2O should be calculated.

Concept Introduction :

The equilibrium constant expression is the ratio of the concentration of products and reactants of a reaction at equilibrium. The concentrations are raised to the power equal to the stoichiometric coefficient in the balanced equation.

(f)

Expert Solution
Check Mark

Answer to Problem 125AE

  Keq=4.0×1010

Explanation of Solution

  HNO2 + OH  NO2 + H2O

  Keq=[ NO 2 ][ HNO 2][ OH ]Keq=[ NO 2 ][ HNO 2][ OH ]×[ H +][ H +]Keq=Ka  for HNO2Kw=4.0× 10 41.0× 10 14Keq=4.0×1010

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The electron of a hydrogen atom is excited to the 4d orbital. Calculate the energy of the emitted photon if the electron were to move to each of the following orbitals: (a) 1s; (b) 2p; (c) 2s; (d) 4s. (e) Suppose the outermost electron of a potassium atom were excited to a 4d orbital and then moved to each of these same orbitals. Describe qualitatively the differences that would be found between the emission spectra of potassium and hydrogen (do not perform calculations). Explain your answer.
Imagine a four-dimensional world. In it, atoms would have one s orbital and four p orbitals in a given shell. (a) Describe the shape of the Periodic Table of the first 24 elements. (b) What elements would be the first two noble gases (use the names from our world that correspond to the atomic numbers).
The electron affinity of thulium was measured by a technique called laser photodetachment electron spectroscopy. In this technique, a gaseous beam of anions of an element is bombarded with photons from a laser. The photons knock electrons off some of the anions, and the energies of the emitted electrons are detected. The incident radiation had a wavelength of 1064 nm, and the emitted electrons had an energy of 0.137 eV. Although the analysis is more complicated, we can obtain an estimate of the electron affinity from the energy difference between the photons and the emitted electrons. What is the electron affinity of thulium in electron volts and in kilojoules per mole?

Chapter 7 Solutions

EBK CHEMICAL PRINCIPLES

Ch. 7 - Prob. 11DQCh. 7 - Prob. 12DQCh. 7 - Prob. 13DQCh. 7 - Prob. 14DQCh. 7 - Prob. 15DQCh. 7 - Prob. 16DQCh. 7 - Prob. 17DQCh. 7 - Consider the autoionization of liquid ammonia:...Ch. 7 - The following are representations of acidbase...Ch. 7 - Prob. 20ECh. 7 - For each of the following aqueous reactions,...Ch. 7 - Write balanced equations that describe the...Ch. 7 - Write the dissociation reaction and the...Ch. 7 - Prob. 24ECh. 7 - Consider the following illustrations: Which beaker...Ch. 7 - Prob. 26ECh. 7 - Prob. 27ECh. 7 - Prob. 28ECh. 7 - Prob. 29ECh. 7 - Prob. 30ECh. 7 - Consider the reaction of acetic acid in water...Ch. 7 - Prob. 32ECh. 7 - Prob. 33ECh. 7 - Prob. 34ECh. 7 - Prob. 35ECh. 7 - Values of Kw as a function of temperature are as...Ch. 7 - Prob. 37ECh. 7 - Prob. 38ECh. 7 - Prob. 39ECh. 7 - Prob. 40ECh. 7 - Prob. 41ECh. 7 - Prob. 42ECh. 7 - Prob. 43ECh. 7 - A solution is prepared by adding 50.0 mL of 0.050...Ch. 7 - Prob. 45ECh. 7 - Prob. 46ECh. 7 - Prob. 47ECh. 7 - Prob. 48ECh. 7 - Calculate the concentration of all species present...Ch. 7 - Prob. 50ECh. 7 - Prob. 51ECh. 7 - Prob. 52ECh. 7 - Prob. 53ECh. 7 - Prob. 54ECh. 7 - A solution is prepared by dissolving 0.56 g of...Ch. 7 - At 25°C a saturated solution of benzoic acid (see...Ch. 7 - Prob. 57ECh. 7 - Prob. 58ECh. 7 - A solution contains a mixture of acids: 0.50 M HA...Ch. 7 - Prob. 60ECh. 7 - Prob. 61ECh. 7 - Prob. 62ECh. 7 - Prob. 63ECh. 7 - Prob. 64ECh. 7 - Prob. 65ECh. 7 - Trichloroacetic acid (CCl3CO2H) is a corrosive...Ch. 7 - Prob. 67ECh. 7 - Prob. 68ECh. 7 - Prob. 69ECh. 7 - Prob. 70ECh. 7 - Prob. 71ECh. 7 - Prob. 72ECh. 7 - Prob. 73ECh. 7 - Prob. 74ECh. 7 - Prob. 75ECh. 7 - Prob. 76ECh. 7 - Prob. 77ECh. 7 - Prob. 78ECh. 7 - Prob. 79ECh. 7 - Prob. 80ECh. 7 - Calculate the pH of a 0.20 M C2H5NH2 solution...Ch. 7 - Prob. 82ECh. 7 - Prob. 83ECh. 7 - Prob. 84ECh. 7 - Prob. 85ECh. 7 - Quinine (C20H24N2O2) is the most important...Ch. 7 - Prob. 87ECh. 7 - Prob. 88ECh. 7 - Prob. 89ECh. 7 - Prob. 90ECh. 7 - Prob. 91ECh. 7 - Prob. 92ECh. 7 - Prob. 93ECh. 7 - Prob. 94ECh. 7 - A typical vitamin C tablet (containing pure...Ch. 7 - Prob. 96ECh. 7 - Prob. 97ECh. 7 - Prob. 98ECh. 7 - Prob. 99ECh. 7 - Prob. 100ECh. 7 - Rank the following 0.10 M solutions in order of...Ch. 7 - Prob. 102ECh. 7 - Prob. 103ECh. 7 - Prob. 104ECh. 7 - Prob. 105ECh. 7 - Prob. 106ECh. 7 - Prob. 107ECh. 7 - Prob. 108ECh. 7 - Prob. 109ECh. 7 - Prob. 110ECh. 7 - Prob. 111ECh. 7 - Prob. 112ECh. 7 - Prob. 113ECh. 7 - Prob. 114ECh. 7 - Prob. 115ECh. 7 - Prob. 116ECh. 7 - Prob. 117ECh. 7 - Prob. 118ECh. 7 - Prob. 119ECh. 7 - Prob. 120ECh. 7 - Prob. 121ECh. 7 - Prob. 122ECh. 7 - Calculate the pH of a 7.0107M HCl solution.Ch. 7 - Calculate the pH of a 1.0107M solution of NaOHin...Ch. 7 - Prob. 125AECh. 7 - Prob. 126AECh. 7 - Prob. 127AECh. 7 - Prob. 128AECh. 7 - Hemoglobin (abbreviated Hb) is a protein that is...Ch. 7 - Prob. 130AECh. 7 - Prob. 131AECh. 7 - Prob. 132AECh. 7 - Prob. 133AECh. 7 - Prob. 134AECh. 7 - Prob. 135AECh. 7 - Prob. 136AECh. 7 - Prob. 137AECh. 7 - One mole of a weak acid HA was dissolved in 2.0 L...Ch. 7 - Prob. 139AECh. 7 - Prob. 140AECh. 7 - Prob. 141AECh. 7 - Will 0.10 M solutions of the following salts be...Ch. 7 - Prob. 143AECh. 7 - Prob. 144AECh. 7 - Prob. 145AECh. 7 - Prob. 146AECh. 7 - Prob. 147AECh. 7 - Prob. 148AECh. 7 - Prob. 149AECh. 7 - Prob. 150AECh. 7 - Prob. 151AECh. 7 - Prob. 152CPCh. 7 - Prob. 153CPCh. 7 - A typical solution of baking soda (sodium...Ch. 7 - Prob. 155CPCh. 7 - Prob. 156CPCh. 7 - Prob. 157CPCh. 7 - Prob. 158CPCh. 7 - Prob. 159CPCh. 7 - Prob. 160CPCh. 7 - Prob. 161CPCh. 7 - Prob. 162CPCh. 7 - Prob. 163CPCh. 7 - Prob. 164CPCh. 7 - Prob. 165CPCh. 7 - Prob. 166CPCh. 7 - Prob. 167CPCh. 7 - Prob. 168CPCh. 7 - Prob. 169MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry by OpenStax (2015-05-04)
    Chemistry
    ISBN:9781938168390
    Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
    Publisher:OpenStax
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Ocean Chemistry; Author: Beverly Owens;https://www.youtube.com/watch?v=IDQzklIr57Q;License: Standard YouTube License, CC-BY