Fundamentals Of Thermal-fluid Sciences In Si Units
Fundamentals Of Thermal-fluid Sciences In Si Units
5th Edition
ISBN: 9789814720953
Author: Yunus Cengel, Robert Turner, John Cimbala
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 7, Problem 121RQ
To determine

The ratio of maximum pressure to minimum pressure.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

The absolute temperature reservoir (TH) is 1.2TL.

The rate of heat rejected by heat pump (W˙net,in) is 5kW.

The mass flow rate (m˙) is 0.22kg/s.

Calculation:

Write the coefficient of performance of reversible heat pump (COPHP,rev).

  COPHP,rev=11TLTH

  COPHP,rev=1111.2=6

Write the coefficient of performance of a Carnot heat pump.

  COPHP=Q˙HW˙net,in        (I)

Rewrite Equation (I) to calculate the heat gained by the pump.

  Q˙H=W˙net,in×COPHP

  Q˙H=5kW×6=30kW

Write the heat transfer from the Carnot heat pump cycle (qH).

  qH=Q˙Hm˙

  qH=30kW0.22kg/s=30kW×kJ/skW0.22kg/s=136.36 kJ/kg

Obtain the temperature and pressure using the above calculated enthalpy of vaporization.

Refer to Table A-12, “Saturated pressure table” enthalpy of vaporization is 136.36 kJ/kg obtain the following properties using interpolation method.

Show the temperature and constant pressure at temperature of 548 K as in Table (1).

Temperature, °C

Enthalpy kJ/kgPressure kPa
57.88141.961600
y2136.36z2
62.87135.141800

Write the formula of interpolation method of two variables.

  y2=(x2x1)(y3y1)(x3x1)+y1        (II)

Here, the variables denoted by x and y are enthalpy and entropy.

Substitute x1=141.96 kJ/kg, x2=136.36 kJ/kg, x3=135.14 kJ/kg, y1=57.88°C, and y3=62.87°C in Equation (II).

  y2=(136.36141.96)(62.8757.88)(135.14141.96)+57.88=5.6×4.996.82+57.88=62°C

Substitute x1=141.96 kJ/kg, x2=136.36 kJ/kg, x3=135.14 kJ/kg, y1=1600 kPa, and  y3=1600 kPa in Equation (II).

  y2=(136.36141.96)(18001600)(135.14141.96)+1600=5.6×2006.82+1600=1764kPa

Calculate the lower temperature of the reservoir.

  TL=TH1.2=62°C1.2=(62+273.2)K1.2=279.3333 K280K

      =(280273.2)°C=6.8°C

Refer table A-11, “Saturated refrigerant-134a temperature table”, obtain pressure value at the temperature of 6.8°C is Pmin=372.55 kPa (using interpolation method).

Calculate the ratio of maximum pressure to minimum pressure.

  PmaxPmin=1764 kPa372.55 kPa=4.735

Thus, the ratio of maximum pressure to minimum pressure is s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Assignment 10, Question 4, Problem Book #202 Problem Statement An ideal Brayton cycle with a two-stage compressor, a two-stage turbine, and a regenerator operates with a mass flow rate of 25 kg/s. The regenerator cold inlet is at 490 K and its effectiveness is 60%. Ambient conditions are 90 kPa and 20°C. The intercooler operates at 450 kPa and the reheater operates at 550 kPa. The temperature at the exit of the combustion chamber is 1,400 K. Heat is removed in the intercooler at a rate of 2.5 MW and heat is added in the reheater at a rate of 10 MW. Determine the thermal efficiency and the back work ratio. Use a cold air standard analysis with cp = 1.005 kJ/(kg K) and k = 1.4. . Answer Table Stage Description Your Answer Correct Answer Due Date Grade (%) 1 Thermal efficiency (%) Dec 5, 2024 11:59 pm 0.0 1 Weight Attempt Action/Message 1/5 Part Type Submit 1 Back work ratio (%) Dec 5, 2024 11:59 pm 0.0 1 * Correct answers will only show after due date has passed.
Assignment 10, Question 3, Problem Book #198 Problem Statement Consider a Brayton cycle with a regenerator. The regenerator has an effectiveness of 75%. The compressor inlet conditions are 1.2 bar and 300 K and the mass flowrate is 4.5 kg/s. The compressor outlet pressure is 9 bar. Both the compressor and turbine consist of a single isentropic stage. What minimum power output must be achieved before the regenerator begins to have a benefit? Use an air-standard analysis. Answer Table Correct Answer Stage Description Your Answer Due Date Grade (%) Part Weight Attempt Action/Message Туре 1 Power output (MW) Dec 5, 2024 11:59 pm 0.0 1 1/5 Submit * Correct answers will only show after due date has passed.
Q-3 Consider an engine operating on the ideal Diesel cycle with air as the working fluid. The volume of the cylinder is 1200 cm³ at the beginning of the Compression process, 75 cm³ at the end, and 150 cm³ after the heat addition process. Air is at 17°c and lookpa at the beginning of the compression proc ess. Determine @ The pressure at the beginning of the heat rejection process. the net work per cycle in kjⒸthe mean effective pressur. Answers @264.3 KN/m² ②0.784 kj or 544-6 kj © 697 KN 19 2 m

Chapter 7 Solutions

Fundamentals Of Thermal-fluid Sciences In Si Units

Ch. 7 - Does a heat engine that has a thermal efficiency...Ch. 7 - Prob. 12PCh. 7 - Are the efficiencies of all the work-producing...Ch. 7 - Consider a pan of water being heated (a) by...Ch. 7 - A steam power plant receives heat from a furnace...Ch. 7 - Prob. 16PCh. 7 - Prob. 17PCh. 7 - The thermal efficiency of a general heat engine is...Ch. 7 - Prob. 19PCh. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - Prob. 23PCh. 7 - In 2001, the United States produced 51 percent of...Ch. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Prob. 32PCh. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - What is the Clausius expression of the second law...Ch. 7 - Show that the Kelvin–Planck and the Clausius...Ch. 7 - Prob. 38PCh. 7 - Prob. 39PCh. 7 - A residential heat pump has a coefficient of...Ch. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - Prob. 43PCh. 7 - A household refrigerator that has a power input of...Ch. 7 - Prob. 45PCh. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - A household refrigerator runs one-fourth of the...Ch. 7 - A heat pump used to heat a house runs about...Ch. 7 - Prob. 51PCh. 7 - Consider a building whose annual air-conditioning...Ch. 7 - Prob. 53PCh. 7 - Prob. 54PCh. 7 - Prob. 55PCh. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Why does a nonquasi-equilibrium compression...Ch. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Prob. 66PCh. 7 - Prob. 67PCh. 7 - Is there any way to increase the efficiency of a...Ch. 7 - Prob. 69PCh. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - Prob. 73PCh. 7 - Prob. 74PCh. 7 - Prob. 75PCh. 7 - An inventor claims to have devised a cyclical...Ch. 7 - A heat engine receives heat from a heat source at...Ch. 7 - In tropical climates, the water near the surface...Ch. 7 - A well-established way of power generation...Ch. 7 - Prob. 80PCh. 7 - Prob. 81PCh. 7 - Prob. 82PCh. 7 - Prob. 83PCh. 7 - Prob. 84PCh. 7 - Prob. 85PCh. 7 - Prob. 86PCh. 7 - Prob. 87PCh. 7 - Prob. 88PCh. 7 - Prob. 89PCh. 7 - Prob. 90PCh. 7 - Prob. 91PCh. 7 - Prob. 92PCh. 7 - Prob. 93PCh. 7 - Prob. 94PCh. 7 - Prob. 95PCh. 7 - Prob. 96PCh. 7 - Prob. 97PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Prob. 100PCh. 7 - Prob. 101PCh. 7 - Prob. 102PCh. 7 - Prob. 103PCh. 7 - Prob. 104PCh. 7 - Prob. 105PCh. 7 - Prob. 106RQCh. 7 - Prob. 107RQCh. 7 - Prob. 108RQCh. 7 - Prob. 109RQCh. 7 - Prob. 110RQCh. 7 - Prob. 111RQCh. 7 - Prob. 112RQCh. 7 - Prob. 114RQCh. 7 - Prob. 115RQCh. 7 - Prob. 117RQCh. 7 - Prob. 118RQCh. 7 - Prob. 119RQCh. 7 - Prob. 120RQCh. 7 - Prob. 121RQCh. 7 - Prob. 122RQCh. 7 - Prob. 123RQCh. 7 - Prob. 124RQCh. 7 - Prob. 125RQCh. 7 - Prob. 127RQCh. 7 - The drinking water needs of a production facility...Ch. 7 - Prob. 129RQCh. 7 - Prob. 131RQCh. 7 - Prob. 132RQCh. 7 - Prob. 133RQCh. 7 - Prob. 134RQCh. 7 - Prob. 136RQCh. 7 - Prob. 137RQ
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY