Fundamentals Of Thermal-fluid Sciences In Si Units
Fundamentals Of Thermal-fluid Sciences In Si Units
5th Edition
ISBN: 9789814720953
Author: Yunus Cengel, Robert Turner, John Cimbala
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7, Problem 123RQ
To determine

The maximum money saved by using the lake water instead of outside air as the heat source.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

The lower temperature of the reversible heat pump (TL)Air is 0°C.

The lower temperature of the reversible heat pump (TL)Lake is 25°C.

The higher temperature of the reversible heat pump (TH) is 25°C.

The rate of heat reject by the heat pump (Q˙H) is 140,000kJ/h.

The cost of electricity is $0.105/kWh.

The number of operating hours is 100 hours.

Calculation:

Initially calculate for outside air:

Calculate coefficient of performance for the reversible heat pump.

  COPHP,rev=11((TL)air/TH)        (I)

  COPHP,rev=11(0°C/25°C)=11(0+273K/25+273K)=11.92

Calculate the minimum power input required to operate the heat pump.

  W˙in,min=Q˙HCOPHP,rev        (II)

  W˙in,min=(140,000kJ/h)(11.92)=(140,000kJ/h)×(1kW3600kJ/h)(11.92)=38.88889kW11.92=3.2624kW

Calculate the cost of the energy in a heat pump (Costair).

  Cost=[(W˙in,min)×(number of hours operates by heat pump)×(cost of electricity)]        (III)

  Costair=(3.2624kW)×(100h)×($0.105/kWh)=$34.255$34.26

Similarly,

For lake water:

Substitute (TL)Lake=10°C and TH=25°C in Equation (I).

  COPHP,rev=11(10°C/25°C)=11(10+273K/25+273K)=19.86619.87

Substitute Q˙H=140,000kJ/h and COPHP,rev=19.87 in Equation (II).

  W˙in,min=(140,000kJ/h)(19.87)=(140,000kJ/h)×(1kW3600kJ/h)(19.87)=38.88889kW19.87=1.957kW

Substitute W˙in,min=1.957kW, 100 h for number of hours operates by heat pump, and $0.105/kWh for cost of electricity in Equation (III).

  Costlake=(1.9571kW)×(100h)×($0.105/kWh)=$20.549$20.55

Calculate the maximum money saved by using the lake water (Costlake) instead of outside air as the heat source.

  Moneysaved=CostairCostlake        (IV)

  Moneysaved=($34.26)($20.55)=$13.71$13.7

Thus, the maximum money saved by using the lake water instead of outside air as the heat source is $13.7_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
My answers are incorrect
Picture
What is the weight of a 5-kg substance in N, kN, kg·m/s², kgf, Ibm-ft/s², and lbf? The weight of a 5-kg substance in N is 49.05 N. The weight of a 5-kg substance in kN is KN. The weight of a 5-kg substance in kg·m/s² is 49.05 kg-m/s². The weight of a 5-kg substance in kgf is 5.0 kgf. The weight of a 5-kg substance in Ibm-ft/s² is 11.02 lbm-ft/s². The weight of a 5-kg substance in lbf is 11.023 lbf.

Chapter 7 Solutions

Fundamentals Of Thermal-fluid Sciences In Si Units

Ch. 7 - Does a heat engine that has a thermal efficiency...Ch. 7 - Prob. 12PCh. 7 - Are the efficiencies of all the work-producing...Ch. 7 - Consider a pan of water being heated (a) by...Ch. 7 - A steam power plant receives heat from a furnace...Ch. 7 - Prob. 16PCh. 7 - Prob. 17PCh. 7 - The thermal efficiency of a general heat engine is...Ch. 7 - Prob. 19PCh. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - Prob. 23PCh. 7 - In 2001, the United States produced 51 percent of...Ch. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Prob. 32PCh. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - What is the Clausius expression of the second law...Ch. 7 - Show that the Kelvin–Planck and the Clausius...Ch. 7 - Prob. 38PCh. 7 - Prob. 39PCh. 7 - A residential heat pump has a coefficient of...Ch. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - Prob. 43PCh. 7 - A household refrigerator that has a power input of...Ch. 7 - Prob. 45PCh. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - A household refrigerator runs one-fourth of the...Ch. 7 - A heat pump used to heat a house runs about...Ch. 7 - Prob. 51PCh. 7 - Consider a building whose annual air-conditioning...Ch. 7 - Prob. 53PCh. 7 - Prob. 54PCh. 7 - Prob. 55PCh. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Why does a nonquasi-equilibrium compression...Ch. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Prob. 66PCh. 7 - Prob. 67PCh. 7 - Is there any way to increase the efficiency of a...Ch. 7 - Prob. 69PCh. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - Prob. 73PCh. 7 - Prob. 74PCh. 7 - Prob. 75PCh. 7 - An inventor claims to have devised a cyclical...Ch. 7 - A heat engine receives heat from a heat source at...Ch. 7 - In tropical climates, the water near the surface...Ch. 7 - A well-established way of power generation...Ch. 7 - Prob. 80PCh. 7 - Prob. 81PCh. 7 - Prob. 82PCh. 7 - Prob. 83PCh. 7 - Prob. 84PCh. 7 - Prob. 85PCh. 7 - Prob. 86PCh. 7 - Prob. 87PCh. 7 - Prob. 88PCh. 7 - Prob. 89PCh. 7 - Prob. 90PCh. 7 - Prob. 91PCh. 7 - Prob. 92PCh. 7 - Prob. 93PCh. 7 - Prob. 94PCh. 7 - Prob. 95PCh. 7 - Prob. 96PCh. 7 - Prob. 97PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Prob. 100PCh. 7 - Prob. 101PCh. 7 - Prob. 102PCh. 7 - Prob. 103PCh. 7 - Prob. 104PCh. 7 - Prob. 105PCh. 7 - Prob. 106RQCh. 7 - Prob. 107RQCh. 7 - Prob. 108RQCh. 7 - Prob. 109RQCh. 7 - Prob. 110RQCh. 7 - Prob. 111RQCh. 7 - Prob. 112RQCh. 7 - Prob. 114RQCh. 7 - Prob. 115RQCh. 7 - Prob. 117RQCh. 7 - Prob. 118RQCh. 7 - Prob. 119RQCh. 7 - Prob. 120RQCh. 7 - Prob. 121RQCh. 7 - Prob. 122RQCh. 7 - Prob. 123RQCh. 7 - Prob. 124RQCh. 7 - Prob. 125RQCh. 7 - Prob. 127RQCh. 7 - The drinking water needs of a production facility...Ch. 7 - Prob. 129RQCh. 7 - Prob. 131RQCh. 7 - Prob. 132RQCh. 7 - Prob. 133RQCh. 7 - Prob. 134RQCh. 7 - Prob. 136RQCh. 7 - Prob. 137RQ
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license