A salt should be defined. How salts are formed by acid base reactions should be explained. Other products formed when aqueous acid and base reacted should be indicated and net ionic equation for the formation of this substance should be written. Concept Introduction: When a strong base and a strong acid react, the major chemical change that occurs is reacting H+ with OH- to form water. Other than water, an ionic compound is formed which might be soluble or insoluble in water. This ionic compound is known as a salt. A chemical equation can be interpreted in three ways. The molecular equation; shows the overall reaction but does not show the actual forms of the reactants or products in the solution. The complete ionic equation; shows all the strong electrolytes as ions and all the reactants and products are included. The net ionic equation; includes only the components which undergo a change. Spectator ions which do not undergo any change are not shown here.
A salt should be defined. How salts are formed by acid base reactions should be explained. Other products formed when aqueous acid and base reacted should be indicated and net ionic equation for the formation of this substance should be written. Concept Introduction: When a strong base and a strong acid react, the major chemical change that occurs is reacting H+ with OH- to form water. Other than water, an ionic compound is formed which might be soluble or insoluble in water. This ionic compound is known as a salt. A chemical equation can be interpreted in three ways. The molecular equation; shows the overall reaction but does not show the actual forms of the reactants or products in the solution. The complete ionic equation; shows all the strong electrolytes as ions and all the reactants and products are included. The net ionic equation; includes only the components which undergo a change. Spectator ions which do not undergo any change are not shown here.
Solution Summary: The author explains how salts are formed by acid base reactions and the net ionic equation for the formation of this substance.
A salt should be defined. How salts are formed by acid base reactions should be explained. Other products formed when aqueous acid and base reacted should be indicated and net ionic equation for the formation of this substance should be written.
Concept Introduction:
When a strong base and a strong acid react, the major chemical change that occurs is reacting H+ with OH- to form water. Other than water, an ionic compound is formed which might be soluble or insoluble in water. This ionic compound is known as a salt. A chemical equation can be interpreted in three ways. The molecular equation; shows the overall reaction but does not show the actual forms of the reactants or products in the solution. The complete ionic equation; shows all the strong electrolytes as ions and all the reactants and products are included. The net ionic equation; includes only the components which undergo a change. Spectator ions which do not undergo any change are not shown here.
Learning Goal:
This question reviews the format for writing an element's written symbol. Recall that written symbols have a particular format. Written symbols use a form like this:
35 Cl
17
In this form the mass number, 35, is a stacked superscript. The atomic number, 17, is a stacked subscript. "CI" is the chemical symbol for the element chlorine. A general way to show this form is:
It is also correct to write symbols by leaving off the atomic number, as in the following form:
atomic number
mass number Symbol
35 Cl or
mass number Symbol
This is because if you write the element symbol, such as Cl, you know the atomic number is 17 from that symbol. Remember that the atomic number, or number of protons in the nucleus, is what defines the element. Thus, if 17 protons
are in the nucleus, the element can only be chlorine. Sometimes you will only see 35 C1, where the atomic number is not written.
Watch this video to review the format for written symbols.
In the following table each column…
need help please and thanks dont understand only need help with C-F
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal…
need help please and thanks dont understand only need help with C-F
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal…
Chapter 7 Solutions
Bundle: Introductory Chemistry: A Foundation, Loose-leaf Version, 9th + OWLv2 with MindTap Reader, 1 term (6 months) Printed Access Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell