Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 10RQ
The forward transfer function of a control system has three poles at -1,-2, and -3 What is the system type?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The ratio of output to input of a system in Laplace domain is known as Transfer function .
Select one:
True
False
Please answer in typing format
The transfer function of a system is shown
below.
G (s) =
S-a
(8+b)(8-c)
Where: a = 6, b = 5 and c = 9
%3D
When you solve the step response in which
R(s) = 1/s, you will get the form of c(t) as
shown below:
c (t) = X+Y e-bt
+ Z ect
%3D
X, Y and Z are constant values which you will
obtain when you solve the response c(t).
For the blank below, enter the sum of Y and Z
(if negative, place a "-" sign before the value).
Use FOUR decimal places.
Y+Z =
%3D
Chapter 7 Solutions
Control Systems Engineering
Ch. 7 - Prob. 1RQCh. 7 - A position control, tracking with a constant...Ch. 7 - Name the test inputs used to evaluate steady-state...Ch. 7 - Prob. 4RQCh. 7 - Increasing system gain has what effect upon the...Ch. 7 - Prob. 6RQCh. 7 - Prob. 7RQCh. 7 - Prob. 8RQCh. 7 - Prob. 9RQCh. 7 - The forward transfer function of a control system...
Ch. 7 - Prob. 11RQCh. 7 - Prob. 12RQCh. 7 - Is the forward-path actuating signal the system...Ch. 7 - Prob. 14RQCh. 7 - Prob. 15RQCh. 7 - Name two methods for calculating the steady-state...Ch. 7 - Prob. 1PCh. 7 - Figure P7.2 shows the ramp input r(t) and the...Ch. 7 - Prob. 3PCh. 7 - Prob. 4PCh. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - A system has Kp = 4. What steady-state error can...Ch. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - Prob. 12PCh. 7 - For the system shown in Figure P7.4. [Section:...Ch. 7 - Prob. 14PCh. 7 - 1515. Find the system type for the system of...Ch. 7 - Prob. 16PCh. 7 - Prob. 17PCh. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - Given the system of Figure P7.8, design the value...Ch. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Prob. 32PCh. 7 - Given the system in Figure P7.9, find the...Ch. 7 - Repeat Problem 33 for the system shown in Figure...Ch. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - Design the values of K1and K2in the system of...Ch. 7 - Prob. 41PCh. 7 - For each system shown in Figure P7.17, find the...Ch. 7 - For each system shown in Figure P7.18, find the...Ch. 7 - Prob. 44PCh. 7 - 45. For the system shown in Figure P7.20,...Ch. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Prob. 53PCh. 7 - Prob. 54PCh. 7 - Prob. 55PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Prob. 66PCh. 7 - Prob. 67PCh. 7 - Prob. 68P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Given the following transfer function of the system: T(s): Find r(t) if f(t) = 8(t). H Search (s+1) (s+3) 99+arrow_forwardA discrete time system has transfer function H(z). If H(o) = 0 there is a zero in z = o. Select one: O True O Falsearrow_forwardReduce the block diagram to a single transfer function.arrow_forward
- A crane hoisting system has the following transfer function. 1 s4 +5s3+s² + 7s+ 11 +s²+7s+ Identify the correct state-space form of the crane hoisting system from the list given below: 100T O a. 0 0 x = 0 -11 O b. x = = -5 1000 00 1 0 x + 01 1 5 1000 1 0700 0070 -1 -7 [−11 1 u; y = [1000]x x + u; y = [1_0_0 0]x 1111 ○ c. 0 1 0 0 0 0 1 0 x = + 0 0 0 1 -11 -7 -1 -5] O d. None of the above u; y = [1 0 0 0]x 2512220 12arrow_forwardSimplify the block diagram shown below. Then, obtain the closed-loop transfer function C(s)/R(s). H3 R(s)- G1 G2 G3 G4 > C(s) H +arrow_forwardasaparrow_forward
- 3. Obtain the transfer function Y(s)/R(s) for the system represented by the block diagram shown in Figure 3. H2 k R(s) G1 G2 Y(s) y Figure 3 Figure 4arrow_forwardReduce the block diagram shown in Figure below to a single transfer function, T(s) = C(s)/R(s) Use the block diagram reduction method.arrow_forwardFind the transfer function,G(s)=Z1(s)/H(s) Find the state space model.arrow_forward
- a) Suspension system of a car. Finding the transfer function F₁(s) = Y(s)/R(t) and F₂ (s) = Q(s)/R(t), consider the initial conditions equal to zero. car chassis www K₂ M₂ 1 Tire M₁ K₁ B₁ y(t)= output q(t) r(t)= input Where [r, q, y] are positions, [k1, k2] are spring constants. [B₁] coefficient of viscous friction, [M₁, M₂] masses. b) Find the answer in time q(t) of the previous system. With the following Ns values: M₁ = 1 kg, M₂ = 0 kg, k₁ = 4 N/m, k₂ = 0 N/m, B₁. = 1 Ns/m, considered m a unit step input, that is, U(s) = 1/sarrow_forward(1) Consider the system represented by the block diagram. The closed loop transfer function T(s)-Y(s)/R(s) is (a) T(s)-50/(s+55 s+50). (b) T(s)=10/(s+50 s+55) (c) T(s)=10/(s+55 s+10). (d) None of the above. R(s)- 10 + s+5 5 Y(s)arrow_forwardAnswer the following by hand and without the use of AI. Thank you!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Robot Revolution: The New Age of Manufacturing | Moving Upstream; Author: Wall Street Journal;https://www.youtube.com/watch?v=HX6M4QunVmA;License: Standard Youtube License