6.65 through 6.68 An extruded beam has the cross section shown. Determine (a) the location of the shear center O, (b) the distribution of the shearing stresses caused by the vertical shearing force V shown applied at O.
Fig. p6.67
(a)
Find the location of the shear center O.
Answer to Problem 68P
The location of the shear center O is
Explanation of Solution
Calculation:
Calculate the moment of inertia as shown below.
Here, b is the width of the section, d is the height of the section, A is the area of the beam, and
Calculate the moment of inertia for whole section as shown below.
Calculate the forces acting along the member as shown below.
Here,
Sketch the cross section of flange as shown in Figure 1.
Refer to Figure 1.
Calculate the first moment of area as shown below.
Calculate the first moment of area for AB as shown below.
Calculate the horizontal shear per unit length as shown below.
Here, V is the vertical shear.
Substitute
Calculate the force
Substitute
For flange AB and flange HJ:
Substitute
For flange DE and flange FG:
Substitute
Sketch the shear flow as shown in Figure 2.
Refer to Figure 2.
Calculate the eccentricity as shown below.
Substitute
Therefore, the location of the shear center O is
(b)
Find the distribution of the shearing stresses caused by the vertical shearing force.
Answer to Problem 68P
The shearing stress at point B, E, G, and J is
The shearing stress at point A and H is
The shearing stress at point just above D and just below F is
The shearing stress at point just to the right of D and just to the right of F is
The shearing stress at point just below D and just above F is
The shearing stress at point K is
Explanation of Solution
Given information:
The vertical shear is
Calculation:
Refer to part (a).
The moment of inertia
Calculate the shear stress as shown below.
At point B, E, G, and J:
Calculate the first moment of area as shown below.
Hence, the shearing stress at point B, E, G, and J is
At point A and H:
Calculate the first moment of area as shown below.
The thickness of the section is
Calculate the shear stress as shown below.
Substitute
Hence, the shearing stress at point A and H is
At point just above D and just below F:
Calculate the first moment of area as shown below.
The thickness of the section is
Calculate the shear stress as shown below.
Substitute
Hence, the shearing stress at point just above D and just below F is
At point just to the right of D and just to the right of F:
Calculate the first moment of area as shown below.
The thickness of the section is
Calculate the shear stress as shown below.
Substitute
Hence, the shearing stress at point just to the right of D and just to the right of F is
At point just below D and just above F:
Calculate the first moment of area as shown below.
The thickness of the section is
Calculate the shear stress as shown below.
Substitute
Hence, the shearing stress at point just below D and just above F is
At point just below D and just above F:
Calculate the first moment of area as shown below.
The thickness of the section is
Calculate the shear stress as shown below.
Substitute
Hence, the shearing stress at point just below D and just above F is
At point K:
Calculate the first moment of area as shown below.
The thickness of the section is
Calculate the shear stress as shown below.
Substitute
Therefore, the shearing stress at point K is
Want to see more full solutions like this?
Chapter 6 Solutions
EBK MECHANICS OF MATERIALS
- Can you research the standard percentage of Steam Quality in:(1.) Boiler - leaving boilerBoiler -> Out(2.) Condenser - coming in condenser In -> CondenserProvide reference Also define: steam quality, its purpose and importancearrow_forwardNumbers 1 and 2 and 5 are are optional problems. However, I only need the values (with units) of 3, 4 and 6. Thank you :)arrow_forwardThree cables are pulling on a ring located at the origin, as shown in the diagram below. FA is 200 N in magnitude with a transverse angle of 30° and an azimuth angle of 140°. FB is 240 N in magnitude with coordinate direction angles α = 135° and β = 45°. Determine the magnitude and direction of FC so that the resultant of all 3 force vectors lies on the z-axis and has a magnitude of 300 N. Specify the direction of FC using its coordinate direction angles.arrow_forward
- 1 Pleasearrow_forwardA spring cylinder system measures the pressure. Determine which spring can measure pressure between 0-1 MPa with a large excursion. The plate has a diameter of 20 mm. Also determine the displacement of each 0.1 MPa step.Spring power F=c x fF=Springpower(N)c=Spring constant (N/mm)f=Suspension (mm) How do I come up with right answer?arrow_forwardA lift with a counterweight is attached to the ceiling. The attachment is with 6 stainless and oiled screws. What screw size is required? What tightening torque? - The lift weighs 500 kg and can carry 800 kg. - Counterweight weight 600 kg - Durability class 12.8 = 960 MPa- Safety factor ns=5+-Sr/Fm= 0.29Gr =0.55arrow_forward
- Knowing that a force P of magnitude 750 N is applied to the pedal shown, determine (a) the diameter of the pin at C for which the average shearing stress in the pin is 40 MPa, (b) the corresponding bearing stress in the pedal at C, (c) the corresponding bearing stress in each support bracket at C. 75 mm 300 mm- mm A B P 125 mm 5 mm C Darrow_forwardAssume the B frame differs from the N frame through a 90 degree rotation about the second N base vector. The corresponding DCM description is: 1 2 3 4 5 6 9 # adjust the return matrix values as needed def result(): dcm = [0, 0, 0, 0, 0, 0, 0, 0, 0] return dcmarrow_forwardFind the reaction at A and B The other response I got was not too accurate,I need expert solved answer, don't use Artificial intelligence or screen shot it solvingarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY