Concept explainers
6.56 and 6.57 A composite beam is made by attaching the timber and steel portions shown with bolts of 12-mm diameter spaced longitudinally every 200 mm. The modulus of elasticity is 10 GPa for the wood and 200 GPa for the steel. For a vertical shear of 4 kN, determine (a) the average shearing stress in the bolts, (b) the shearing stress at the center of the cross section. (Hint: Use the method indicated in Prob. 6.55.)
Fig. p6.56
(a)
The average shearing stress in the bolts.
Answer to Problem 56P
The average shearing stress in the bolts is
Explanation of Solution
Given information:
The diameter of the bolts is
The longitudinal spacing is
The beam is subjected to a vertical shear of
The modulus of elasticity for wood
The modulus of elasticity for steel
Calculation:
Consider the steel is to be the reference material. So modular ratio of steel is
Calculate the modular ratio of timber wood
Here,
Substitute
Total depth of the section d is as follows:
Calculate the moment of inertia for the symmetric section I as shown below.
Here, b is the width of the section and d is the depth of the section.
For steel:
For wood:
Calculate the moment of inertia for the transformed section as shown below.
Substitute 1 for
Calculate the first moment of area as shown below.
For wooden section:
Calculate the first moment of area for the transformed section Q as shown below.
Substitute
Calculate the horizontal shear per unit length q as shown below.
Here V is the vertical shear.
Substitute
Calculate the force acting on the bolt
Here, s is the longitudinal spacing.
Substitute
Calculate the area of bolt
Here,
Substitute
The bolt is subjected to double shear.
Calculate the shearing stress of the bolt
Substitute
Therefore, the average shearing stress in the bolts is
(b)
The shearing stress at the center of the cross section.
Answer to Problem 56P
The shearing stress at the center of the cross section is
Explanation of Solution
Given information:
The diameter of the bolts is
The longitudinal spacing is
The beam is subjected to a vertical shear of
The modulus of elasticity for wood
The modulus of elasticity for steel
Calculation:
Refer to part (a).
Moment of inertia for the transformed section
Calculate the first moment of area as shown below.
For the two steel plates:
Calculate the first moment of area along the neutral axis for the transformed section as shown below.
Substitute
Calculate the horizontal shear per unit length as shown below.
Substitute
Calculate the shearing stress as shown below.
Substitute
Therefore, the shearing stress at the center of the cross section is
Want to see more full solutions like this?
Chapter 6 Solutions
EBK MECHANICS OF MATERIALS
- Q1/ A vertical, circular gate with water on one side as shown. Determine the total resultant force acting on the gate and the location of the center of pressure, use water specific weight 9.81 kN/m³ 1 m 4 marrow_forwardI need handwritten solution with sketches for eacharrow_forwardGiven answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1arrow_forward
- (b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q2: For the following figure, find the reactions of the system. The specific weight of the plate is 500 lb/ft³arrow_forwardQ1: For the following force system, find the moments with respect to axes x, y, and zarrow_forwardQ10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forward
- Help ارجو مساعدتي في حل هذا السؤالarrow_forwardQ3: Find the resultant of the force system.arrow_forwardQuestion 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY